示例#1
0
// Send implements the client.Sender interface. The store is looked up from the
// store map if specified by the request; otherwise, the command is being
// executed locally, and the replica is determined via lookup through each
// store's LookupRange method. The latter path is taken only by unit tests.
func (ls *Stores) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) {
	var store *Store
	var err error

	// If we aren't given a Replica, then a little bending over
	// backwards here. This case applies exclusively to unittests.
	if ba.RangeID == 0 || ba.Replica.StoreID == 0 {
		var repl *roachpb.ReplicaDescriptor
		var rangeID roachpb.RangeID
		rs := keys.Range(ba)
		rangeID, repl, err = ls.lookupReplica(rs.Key, rs.EndKey)
		if err == nil {
			ba.RangeID = rangeID
			ba.Replica = *repl
		}
	}

	ctx = log.Add(ctx,
		log.RangeID, ba.RangeID)

	if err == nil {
		store, err = ls.GetStore(ba.Replica.StoreID)
	}

	if err != nil {
		return nil, roachpb.NewError(err)
	}

	sp, cleanupSp := tracing.SpanFromContext(opStores, store.Tracer(), ctx)
	defer cleanupSp()
	if ba.Txn != nil {
		// For calls that read data within a txn, we keep track of timestamps
		// observed from the various participating nodes' HLC clocks. If we have
		// a timestamp on file for this Node which is smaller than MaxTimestamp,
		// we can lower MaxTimestamp accordingly. If MaxTimestamp drops below
		// OrigTimestamp, we effectively can't see uncertainty restarts any
		// more.
		// Note that it's not an issue if MaxTimestamp propagates back out to
		// the client via a returned Transaction update - when updating a Txn
		// from another, the larger MaxTimestamp wins.
		if maxTS, ok := ba.Txn.GetObservedTimestamp(ba.Replica.NodeID); ok && maxTS.Less(ba.Txn.MaxTimestamp) {
			// Copy-on-write to protect others we might be sharing the Txn with.
			shallowTxn := *ba.Txn
			// The uncertainty window is [OrigTimestamp, maxTS), so if that window
			// is empty, there won't be any uncertainty restarts.
			if !ba.Txn.OrigTimestamp.Less(maxTS) {
				sp.LogEvent("read has no clock uncertainty")
			}
			shallowTxn.MaxTimestamp.Backward(maxTS)
			ba.Txn = &shallowTxn
		}
	}
	br, pErr := store.Send(ctx, ba)
	if br != nil && br.Error != nil {
		panic(roachpb.ErrorUnexpectedlySet(store, br))
	}
	return br, pErr
}
示例#2
0
// Send implements the client.Sender interface. The store is looked up from the
// store map if specified by the request; otherwise, the command is being
// executed locally, and the replica is determined via lookup through each
// store's LookupRange method. The latter path is taken only by unit tests.
func (ls *Stores) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) {
	sp := tracing.SpanFromContext(ctx)
	var store *Store
	var pErr *roachpb.Error

	// If we aren't given a Replica, then a little bending over
	// backwards here. This case applies exclusively to unittests.
	if ba.RangeID == 0 || ba.Replica.StoreID == 0 {
		var repl *roachpb.ReplicaDescriptor
		var rangeID roachpb.RangeID
		rs := keys.Range(ba)
		rangeID, repl, pErr = ls.lookupReplica(rs.Key, rs.EndKey)
		if pErr == nil {
			ba.RangeID = rangeID
			ba.Replica = *repl
		}
	}

	ctx = log.Add(ctx,
		log.RangeID, ba.RangeID)

	if pErr == nil {
		store, pErr = ls.GetStore(ba.Replica.StoreID)
	}

	var br *roachpb.BatchResponse
	if pErr != nil {
		return nil, pErr
	}
	// For calls that read data within a txn, we can avoid uncertainty
	// related retries in certain situations. If the node is in
	// "CertainNodes", we need not worry about uncertain reads any
	// more. Setting MaxTimestamp=OrigTimestamp for the operation
	// accomplishes that. See roachpb.Transaction.CertainNodes for details.
	if ba.Txn != nil && ba.Txn.CertainNodes.Contains(ba.Replica.NodeID) {
		// MaxTimestamp = Timestamp corresponds to no clock uncertainty.
		sp.LogEvent("read has no clock uncertainty")
		// Copy-on-write to protect others we might be sharing the Txn with.
		shallowTxn := *ba.Txn
		// We set to OrigTimestamp because that works for both SNAPSHOT and
		// SERIALIZABLE: If we used Timestamp instead, we could run into
		// unnecessary retries at SNAPSHOT. For example, a SNAPSHOT txn at
		// OrigTimestamp = 1000.0, Timestamp = 2000.0, MaxTimestamp = 3000.0
		// will always read at 1000, so a MaxTimestamp of 2000 will still let
		// it restart with uncertainty when it finds a value in (1000, 2000).
		shallowTxn.MaxTimestamp = ba.Txn.OrigTimestamp
		ba.Txn = &shallowTxn
	}
	br, pErr = store.Send(ctx, ba)
	if br != nil && br.Error != nil {
		panic(roachpb.ErrorUnexpectedlySet(store, br))
	}
	return br, pErr
}
示例#3
0
// Send implements the client.Sender interface. The store is looked up from the
// store map if specified by the request; otherwise, the command is being
// executed locally, and the replica is determined via lookup through each
// store's LookupRange method. The latter path is taken only by unit tests.
func (ls *Stores) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) {
	sp := tracing.SpanFromContext(ctx)
	var store *Store
	var pErr *roachpb.Error

	// If we aren't given a Replica, then a little bending over
	// backwards here. This case applies exclusively to unittests.
	if ba.RangeID == 0 || ba.Replica.StoreID == 0 {
		var repl *roachpb.ReplicaDescriptor
		var rangeID roachpb.RangeID
		rs := keys.Range(ba)
		rangeID, repl, pErr = ls.lookupReplica(rs.Key, rs.EndKey)
		if pErr == nil {
			ba.RangeID = rangeID
			ba.Replica = *repl
		}
	}

	ctx = log.Add(ctx,
		log.RangeID, ba.RangeID)

	if pErr == nil {
		store, pErr = ls.GetStore(ba.Replica.StoreID)
	}

	var br *roachpb.BatchResponse
	if pErr != nil {
		return nil, pErr
	}
	// For calls that read data within a txn, we can avoid uncertainty
	// related retries in certain situations. If the node is in
	// "CertainNodes", we need not worry about uncertain reads any
	// more. Setting MaxTimestamp=Timestamp for the operation
	// accomplishes that. See roachpb.Transaction.CertainNodes for details.
	if ba.Txn != nil && ba.Txn.CertainNodes.Contains(ba.Replica.NodeID) {
		// MaxTimestamp = Timestamp corresponds to no clock uncertainty.
		sp.LogEvent("read has no clock uncertainty")
		// Copy-on-write to protect others we might be sharing the Txn with.
		shallowTxn := *ba.Txn
		shallowTxn.MaxTimestamp = ba.Txn.Timestamp
		ba.Txn = &shallowTxn
	}
	br, pErr = store.Send(ctx, ba)
	if br != nil && br.Error != nil {
		panic(roachpb.ErrorUnexpectedlySet(store, br))
	}
	return br, pErr
}
示例#4
0
// updateState updates the transaction state in both the success and
// error cases, applying those updates to the corresponding txnMeta
// object when adequate. It also updates certain errors with the
// updated transaction for use by client restarts.
func (tc *TxnCoordSender) updateState(ctx context.Context, ba roachpb.BatchRequest, br *roachpb.BatchResponse, pErr *roachpb.Error) *roachpb.Error {
	sp, cleanupSp := tracing.SpanFromContext(opTxnCoordSender, tc.tracer, ctx)
	defer cleanupSp()

	newTxn := &roachpb.Transaction{}
	newTxn.Update(ba.Txn)
	if pErr == nil {
		newTxn.Update(br.Txn)
	} else {
		newTxn.Update(pErr.GetTxn())
	}

	// If the request was successful but we're in a transaction which needs to
	// restart but doesn't know it yet, let it restart now (as opposed to
	// waiting until EndTransaction).
	if pErr == nil && newTxn.Isolation == roachpb.SERIALIZABLE &&
		!newTxn.OrigTimestamp.Equal(newTxn.Timestamp) {
		pErr = roachpb.NewErrorWithTxn(roachpb.NewTransactionRetryError(), br.Txn)
		br = nil
	}

	switch t := pErr.GetDetail().(type) {
	case *roachpb.TransactionStatusError:
		// Likely already committed or more obscure errors such as epoch or
		// timestamp regressions; consider txn dead.
		defer tc.cleanupTxn(sp, *pErr.GetTxn())
	case *roachpb.OpRequiresTxnError:
		panic("OpRequiresTxnError must not happen at this level")
	case *roachpb.ReadWithinUncertaintyIntervalError:
		// If the reader encountered a newer write within the uncertainty
		// interval, we advance the txn's timestamp just past the last observed
		// timestamp from the node.
		restartTS, ok := newTxn.GetObservedTimestamp(pErr.OriginNode)
		if !ok {
			pErr = roachpb.NewError(util.Errorf("no observed timestamp for node %d found on uncertainty restart", pErr.OriginNode))
		} else {
			newTxn.Timestamp.Forward(restartTS)
			newTxn.Restart(ba.UserPriority, newTxn.Priority, newTxn.Timestamp)
		}
	case *roachpb.TransactionAbortedError:
		// Increase timestamp if applicable.
		newTxn.Timestamp.Forward(pErr.GetTxn().Timestamp)
		newTxn.Priority = pErr.GetTxn().Priority
		// Clean up the freshly aborted transaction in defer(), avoiding a
		// race with the state update below.
		defer tc.cleanupTxn(sp, *newTxn)
	case *roachpb.TransactionPushError:
		// Increase timestamp if applicable, ensuring that we're
		// just ahead of the pushee.
		newTxn.Timestamp.Forward(t.PusheeTxn.Timestamp.Add(0, 1))
		newTxn.Restart(ba.UserPriority, t.PusheeTxn.Priority-1, newTxn.Timestamp)
	case *roachpb.TransactionRetryError:
		newTxn.Restart(ba.UserPriority, pErr.GetTxn().Priority, newTxn.Timestamp)
	case nil:
		// Nothing to do here, avoid the default case.
	default:
		if pErr.GetTxn() != nil {
			if pErr.CanRetry() {
				panic("Retryable internal error must not happen at this level")
			} else {
				// Do not clean up the transaction here since the client might still
				// want to continue the transaction. For example, a client might
				// continue its transaction after receiving ConditionFailedError, which
				// can come from a unique index violation.
			}
		}
	}

	if pErr != nil && pErr.GetTxn() != nil {
		// Avoid changing existing errors because sometimes they escape into
		// goroutines and then there are races. Fairly sure there isn't one
		// here, but better safe than sorry.
		pErrShallow := *pErr
		pErrShallow.SetTxn(newTxn)
		pErr = &pErrShallow
	}

	if newTxn.ID == nil {
		return pErr
	}
	txnID := *newTxn.ID
	tc.Lock()
	defer tc.Unlock()
	txnMeta := tc.txns[txnID]
	// For successful transactional requests, keep the written intents and
	// the updated transaction record to be sent along with the reply.
	// The transaction metadata is created with the first writing operation.
	// A tricky edge case is that of a transaction which "fails" on the
	// first writing request, but actually manages to write some intents
	// (for example, due to being multi-range). In this case, there will
	// be an error, but the transaction will be marked as Writing and the
	// coordinator must track the state, for the client's retry will be
	// performed with a Writing transaction which the coordinator rejects
	// unless it is tracking it (on top of it making sense to track it;
	// after all, it **has** laid down intents and only the coordinator
	// can augment a potential EndTransaction call). See #3303.
	var intents []roachpb.Span
	// TODO(nvanbenschoten): Iterating here to put the intents in a slice for
	// the sole purpose of later iterating again and calling addKeyRange is a
	// little wasteful and can likely be avoided.
	ba.IntentSpanIterate(func(key, endKey roachpb.Key) {
		intents = append(intents, roachpb.Span{Key: key, EndKey: endKey})
	})

	if len(intents) > 0 && (pErr == nil || newTxn.Writing) {
		if txnMeta == nil {
			if !newTxn.Writing {
				panic("txn with intents marked as non-writing")
			}
			// If the transaction is already over, there's no point in
			// launching a one-off coordinator which will shut down right
			// away. If we ended up here with an error, we'll always start
			// the coordinator - the transaction has laid down intents, so
			// we expect it to be committed/aborted at some point in the
			// future.
			if _, isEnding := ba.GetArg(roachpb.EndTransaction); pErr != nil || !isEnding {
				sp.LogEvent("coordinator spawns")
				txnMeta = &txnMetadata{
					txn:              *newTxn,
					keys:             interval.NewRangeTree(),
					firstUpdateNanos: tc.clock.PhysicalNow(),
					lastUpdateNanos:  tc.clock.PhysicalNow(),
					timeoutDuration:  tc.clientTimeout,
					txnEnd:           make(chan struct{}),
				}
				tc.txns[txnID] = txnMeta

				if !tc.stopper.RunAsyncTask(func() {
					tc.heartbeatLoop(txnID)
				}) {
					// The system is already draining and we can't start the
					// heartbeat. We refuse new transactions for now because
					// they're likely not going to have all intents committed.
					// In principle, we can relax this as needed though.
					tc.unregisterTxnLocked(txnID)
					return roachpb.NewError(&roachpb.NodeUnavailableError{})
				}
			}
		}
	}
	// Update our record of this transaction, even on error.
	if txnMeta != nil {
		txnMeta.txn = *newTxn
		if !txnMeta.txn.Writing {
			panic("tracking a non-writing txn")
		}
		txnMeta.setLastUpdate(tc.clock.PhysicalNow())
		// Adding the intents even on error reduces the likelihood of dangling
		// intents blocking concurrent writers for extended periods of time.
		// See #3346.
		for _, intent := range intents {
			addKeyRange(txnMeta.keys, intent.Key, intent.EndKey)
		}
	}
	if pErr == nil {
		// For successful transactional requests, always send the updated txn
		// record back.
		br.Txn = newTxn
	}
	return pErr
}
示例#5
0
// Send implements the batch.Sender interface. If the request is part of a
// transaction, the TxnCoordSender adds the transaction to a map of active
// transactions and begins heartbeating it. Every subsequent request for the
// same transaction updates the lastUpdate timestamp to prevent live
// transactions from being considered abandoned and garbage collected.
// Read/write mutating requests have their key or key range added to the
// transaction's interval tree of key ranges for eventual cleanup via resolved
// write intents; they're tagged to an outgoing EndTransaction request, with
// the receiving replica in charge of resolving them.
func (tc *TxnCoordSender) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) {
	// Start new or pick up active trace and embed its trace metadata into
	// header for use by RPC recipients. From here on, there's always an active
	// Trace, though its overhead is small unless it's sampled.
	sp, cleanupSp := tracing.SpanFromContext(opTxnCoordSender, tc.tracer, ctx)
	defer cleanupSp()
	// TODO(tschottdorf): To get rid of the spurious alloc below we need to
	// implement the carrier interface on ba.Header or make Span non-nullable,
	// both of which force all of ba on the Heap. It's already there, so may
	// not be a big deal, but ba should live on the stack. Also not easy to use
	// a buffer pool here since anything that goes into the RPC layer could be
	// used by goroutines we didn't wait for.
	if ba.Header.Trace == nil {
		ba.Header.Trace = &tracing.Span{}
	}
	if err := tc.tracer.Inject(sp, basictracer.Delegator, ba.Trace); err != nil {
		return nil, roachpb.NewError(err)
	}

	if err := tc.maybeBeginTxn(&ba); err != nil {
		return nil, roachpb.NewError(err)
	}
	var startNS int64
	ba.SetNewRequest()

	// This is the earliest point at which the request has an ID (if
	// applicable). Begin a Trace which follows this request.
	ctx = opentracing.ContextWithSpan(ctx, sp)

	if ba.Txn != nil {
		// If this request is part of a transaction...
		txnID := *ba.Txn.ID
		// Verify that if this Transaction is not read-only, we have it on
		// file. If not, refuse writes - the client must have issued a write on
		// another coordinator previously.
		if ba.Txn.Writing && ba.IsTransactionWrite() {
			tc.Lock()
			_, ok := tc.txns[txnID]
			tc.Unlock()
			if !ok {
				return nil, roachpb.NewErrorf("transaction must not write on multiple coordinators")
			}
		}

		if rArgs, ok := ba.GetArg(roachpb.EndTransaction); ok {
			et := rArgs.(*roachpb.EndTransactionRequest)
			if len(et.Key) != 0 {
				return nil, roachpb.NewErrorf("EndTransaction must not have a Key set")
			}
			et.Key = ba.Txn.Key
			// Remember when EndTransaction started in case we want to
			// be linearizable.
			startNS = tc.clock.PhysicalNow()
			if len(et.IntentSpans) > 0 {
				// TODO(tschottdorf): it may be useful to allow this later.
				// That would be part of a possible plan to allow txns which
				// write on multiple coordinators.
				return nil, roachpb.NewErrorf("client must not pass intents to EndTransaction")
			}
			tc.Lock()
			txnMeta, metaOK := tc.txns[txnID]
			{
				// Populate et.IntentSpans, taking into account both existing
				// writes (if any) and new writes in this batch, and taking
				// care to perform proper deduplication.
				var keys interval.RangeGroup
				if metaOK {
					keys = txnMeta.keys
				} else {
					keys = interval.NewRangeTree()
				}
				ba.IntentSpanIterate(func(key, endKey roachpb.Key) {
					addKeyRange(keys, key, endKey)
				})
				et.IntentSpans = collectIntentSpans(keys)
			}
			tc.Unlock()

			if len(et.IntentSpans) > 0 {
				// All good, proceed.
			} else if !metaOK {
				// If we don't have the transaction, then this must be a retry
				// by the client. We can no longer reconstruct a correct
				// request so we must fail.
				//
				// TODO(bdarnell): if we had a GetTransactionStatus API then
				// we could lookup the transaction and return either nil or
				// TransactionAbortedError instead of this ambivalent error.
				return nil, roachpb.NewErrorf("transaction is already committed or aborted")
			}
			if len(et.IntentSpans) == 0 {
				// If there aren't any intents, then there's factually no
				// transaction to end. Read-only txns have all of their state in
				// the client.
				return nil, roachpb.NewErrorf("cannot commit a read-only transaction")
			}
			if log.V(1) {
				for _, intent := range et.IntentSpans {
					sp.LogEvent(fmt.Sprintf("intent: [%s,%s)", intent.Key, intent.EndKey))
				}
			}
		}
	}

	// Send the command through wrapped sender, taking appropriate measures
	// on error.
	var br *roachpb.BatchResponse
	{
		var pErr *roachpb.Error
		br, pErr = tc.wrapped.Send(ctx, ba)

		if _, ok := pErr.GetDetail().(*roachpb.OpRequiresTxnError); ok {
			// TODO(tschottdorf): needs to keep the trace.
			br, pErr = tc.resendWithTxn(ba)
		}

		if pErr = tc.updateState(ctx, ba, br, pErr); pErr != nil {
			sp.LogEvent(fmt.Sprintf("error: %s", pErr))
			return nil, pErr
		}
	}

	if br.Txn == nil {
		return br, nil
	}

	if _, ok := ba.GetArg(roachpb.EndTransaction); !ok {
		return br, nil
	}
	// If the --linearizable flag is set, we want to make sure that
	// all the clocks in the system are past the commit timestamp
	// of the transaction. This is guaranteed if either
	// - the commit timestamp is MaxOffset behind startNS
	// - MaxOffset ns were spent in this function
	// when returning to the client. Below we choose the option
	// that involves less waiting, which is likely the first one
	// unless a transaction commits with an odd timestamp.
	if tsNS := br.Txn.Timestamp.WallTime; startNS > tsNS {
		startNS = tsNS
	}
	sleepNS := tc.clock.MaxOffset() -
		time.Duration(tc.clock.PhysicalNow()-startNS)
	if tc.linearizable && sleepNS > 0 {
		defer func() {
			if log.V(1) {
				log.Infof("%v: waiting %s on EndTransaction for linearizability", br.Txn.Short(), util.TruncateDuration(sleepNS, time.Millisecond))
			}
			time.Sleep(sleepNS)
		}()
	}
	if br.Txn.Status != roachpb.PENDING {
		tc.cleanupTxn(sp, *br.Txn)
	}
	return br, nil
}
示例#6
0
// updateState updates the transaction state in both the success and
// error cases, applying those updates to the corresponding txnMeta
// object when adequate. It also updates certain errors with the
// updated transaction for use by client restarts.
func (tc *TxnCoordSender) updateState(ctx context.Context, ba roachpb.BatchRequest, br *roachpb.BatchResponse, pErr *roachpb.Error) *roachpb.Error {
	sp := tracing.SpanFromContext(ctx)
	newTxn := &roachpb.Transaction{}
	newTxn.Update(ba.Txn)
	// If the request was successful but we're in a transaction which needs to
	// restart but doesn't know it yet, let it restart now (as opposed to
	// waiting until EndTransaction).
	if pErr == nil && br.Txn != nil && br.Txn.Isolation == roachpb.SERIALIZABLE &&
		!br.Txn.OrigTimestamp.Equal(br.Txn.Timestamp) {
		pErr = roachpb.NewErrorWithTxn(roachpb.NewTransactionRetryError(), br.Txn)
		br = nil
	}

	// TODO(bdarnell): We're writing to errors here (and where using ErrorWithIndex);
	// since there's no concept of ownership copy-on-write is always preferable.
	switch t := pErr.GetDetail().(type) {
	case nil:
		newTxn.Update(br.Txn)
		// Move txn timestamp forward to response timestamp if applicable.
		// TODO(tschottdorf): see (*Replica).executeBatch and comments within.
		// Looks like this isn't necessary any more, nor did it prevent a bug
		// referenced in a TODO there.
		newTxn.Timestamp.Forward(br.Timestamp)
	case *roachpb.TransactionStatusError:
		// Likely already committed or more obscure errors such as epoch or
		// timestamp regressions; consider txn dead.
		pErrTxn := pErr.GetTxn().Clone()
		defer tc.cleanupTxn(sp, pErrTxn)
	case *roachpb.OpRequiresTxnError:
		panic("OpRequiresTxnError must not happen at this level")
	case *roachpb.ReadWithinUncertaintyIntervalError:
		// Mark the host as certain. See the protobuf comment for
		// Transaction.CertainNodes for details.
		if t.NodeID == 0 {
			panic("no replica set in header on uncertainty restart")
		}
		newTxn.Update(pErr.GetTxn())
		newTxn.CertainNodes.Add(t.NodeID)
		// If the reader encountered a newer write within the uncertainty
		// interval, move the timestamp forward, just past that write or
		// up to MaxTimestamp, whichever comes first.
		candidateTS := newTxn.MaxTimestamp
		candidateTS.Backward(t.ExistingTimestamp.Add(0, 1))
		newTxn.Timestamp.Forward(candidateTS)
		newTxn.Restart(ba.UserPriority, newTxn.Priority, newTxn.Timestamp)
		pErr.SetTxn(newTxn)
	case *roachpb.TransactionAbortedError:
		newTxn.Update(pErr.GetTxn())
		// Increase timestamp if applicable.
		newTxn.Timestamp.Forward(pErr.GetTxn().Timestamp)
		newTxn.Priority = pErr.GetTxn().Priority
		pErr.SetTxn(newTxn)
		// Clean up the freshly aborted transaction in defer(), avoiding a
		// race with the state update below.
		defer tc.cleanupTxn(sp, *pErr.GetTxn())
	case *roachpb.TransactionPushError:
		newTxn.Update(pErr.GetTxn())
		// Increase timestamp if applicable, ensuring that we're
		// just ahead of the pushee.
		newTxn.Timestamp.Forward(t.PusheeTxn.Timestamp.Add(0, 1))
		newTxn.Restart(ba.UserPriority, t.PusheeTxn.Priority-1, newTxn.Timestamp)
		pErr.SetTxn(newTxn)
	case *roachpb.TransactionRetryError:
		newTxn.Update(pErr.GetTxn())
		newTxn.Restart(ba.UserPriority, pErr.GetTxn().Priority, newTxn.Timestamp)
		pErr.SetTxn(newTxn)
	}

	if newTxn.ID == nil {
		return pErr
	}
	txnID := *newTxn.ID
	tc.Lock()
	defer tc.Unlock()
	txnMeta := tc.txns[txnID]
	// For successful transactional requests, keep the written intents and
	// the updated transaction record to be sent along with the reply.
	// The transaction metadata is created with the first writing operation.
	// A tricky edge case is that of a transaction which "fails" on the
	// first writing request, but actually manages to write some intents
	// (for example, due to being multi-range). In this case, there will
	// be an error, but the transaction will be marked as Writing and the
	// coordinator must track the state, for the client's retry will be
	// performed with a Writing transaction which the coordinator rejects
	// unless it is tracking it (on top of it making sense to track it;
	// after all, it **has** laid down intents and only the coordinator
	// can augment a potential EndTransaction call). See #3303.
	intents := ba.GetIntentSpans()
	if len(intents) > 0 && (pErr == nil || newTxn.Writing) {
		if txnMeta == nil {
			if !newTxn.Writing {
				panic("txn with intents marked as non-writing")
			}
			// If the transaction is already over, there's no point in
			// launching a one-off coordinator which will shut down right
			// away. If we ended up here with an error, we'll always start
			// the coordinator - the transaction has laid down intents, so
			// we expect it to be committed/aborted at some point in the
			// future.
			if _, isEnding := ba.GetArg(roachpb.EndTransaction); pErr != nil || !isEnding {
				sp.LogEvent("coordinator spawns")
				txnMeta = &txnMetadata{
					txn:              *newTxn,
					keys:             cache.NewIntervalCache(cache.Config{Policy: cache.CacheNone}),
					firstUpdateNanos: tc.clock.PhysicalNow(),
					lastUpdateNanos:  tc.clock.PhysicalNow(),
					timeoutDuration:  tc.clientTimeout,
					txnEnd:           make(chan struct{}),
				}
				tc.txns[txnID] = txnMeta

				if !tc.stopper.RunAsyncTask(func() {
					tc.heartbeatLoop(txnID)
				}) {
					// The system is already draining and we can't start the
					// heartbeat. We refuse new transactions for now because
					// they're likely not going to have all intents committed.
					// In principle, we can relax this as needed though.
					tc.unregisterTxnLocked(txnID)
					return roachpb.NewError(&roachpb.NodeUnavailableError{})
				}
			}
		}
	}
	// Update our record of this transaction, even on error.
	if txnMeta != nil {
		txnMeta.txn = *newTxn
		if !txnMeta.txn.Writing {
			panic("tracking a non-writing txn")
		}
		txnMeta.setLastUpdate(tc.clock.PhysicalNow())
		// Adding the intents even on error reduces the likelihood of dangling
		// intents blocking concurrent writers for extended periods of time.
		// See #3346.
		for _, intent := range intents {
			txnMeta.addKeyRange(intent.Key, intent.EndKey)
		}
	}
	if pErr == nil {
		// For successful transactional requests, always send the updated txn
		// record back.
		br.Txn = newTxn
	}
	return pErr
}
示例#7
0
// sendChunk is in charge of sending an "admissible" piece of batch, i.e. one
// which doesn't need to be subdivided further before going to a range (so no
// mixing of forward and reverse scans, etc). The parameters and return values
// correspond to client.Sender with the exception of the returned boolean,
// which is true when indicating that the caller should retry but needs to send
// EndTransaction in a separate request.
func (ds *DistSender) sendChunk(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error, bool) {
	isReverse := ba.IsReverse()

	sp := tracing.SpanFromContext(ctx)

	// The minimal key range encompassing all requests contained within.
	// Local addressing has already been resolved.
	// TODO(tschottdorf): consider rudimentary validation of the batch here
	// (for example, non-range requests with EndKey, or empty key ranges).
	rs := keys.Range(ba)
	var br *roachpb.BatchResponse
	// Send the request to one range per iteration.
	for {
		considerIntents := false
		var curReply *roachpb.BatchResponse
		var desc *roachpb.RangeDescriptor
		var needAnother bool
		var pErr *roachpb.Error
		var finished bool
		for r := retry.Start(ds.rpcRetryOptions); r.Next(); {
			// Get range descriptor (or, when spanning range, descriptors). Our
			// error handling below may clear them on certain errors, so we
			// refresh (likely from the cache) on every retry.
			sp.LogEvent("meta descriptor lookup")
			var evictDesc func()
			desc, needAnother, evictDesc, pErr = ds.getDescriptors(rs, considerIntents, isReverse)

			// getDescriptors may fail retryably if the first range isn't
			// available via Gossip.
			if pErr != nil {
				if pErr.Retryable {
					if log.V(1) {
						log.Warning(pErr)
					}
					continue
				}
				break
			}

			if needAnother && br == nil {
				// TODO(tschottdorf): we should have a mechanism for discovering
				// range merges (descriptor staleness will mostly go unnoticed),
				// or we'll be turning single-range queries into multi-range
				// queries for no good reason.

				// If there's no transaction and op spans ranges, possibly
				// re-run as part of a transaction for consistency. The
				// case where we don't need to re-run is if the read
				// consistency is not required.
				if ba.Txn == nil && ba.IsPossibleTransaction() &&
					ba.ReadConsistency != roachpb.INCONSISTENT {
					return nil, roachpb.NewError(&roachpb.OpRequiresTxnError{}), false
				}
				// If the request is more than but ends with EndTransaction, we
				// want the caller to come again with the EndTransaction in an
				// extra call.
				if l := len(ba.Requests) - 1; l > 0 && ba.Requests[l].GetInner().Method() == roachpb.EndTransaction {
					return nil, roachpb.NewError(errors.New("cannot send 1PC txn to multiple ranges")), true /* shouldSplitET */
				}
			}

			// It's possible that the returned descriptor misses parts of the
			// keys it's supposed to scan after it's truncated to match the
			// descriptor. Example revscan [a,g), first desc lookup for "g"
			// returns descriptor [c,d) -> [d,g) is never scanned.
			// We evict and retry in such a case.
			if (isReverse && !desc.ContainsKeyRange(desc.StartKey, rs.EndKey)) || (!isReverse && !desc.ContainsKeyRange(rs.Key, desc.EndKey)) {
				evictDesc()
				continue
			}

			curReply, pErr = func() (*roachpb.BatchResponse, *roachpb.Error) {
				// Truncate the request to our current key range.
				intersected, iErr := rs.Intersect(desc)
				if iErr != nil {
					return nil, roachpb.NewError(iErr)
				}
				truncBA, numActive, trErr := truncate(ba, intersected)
				if numActive == 0 && trErr == nil {
					// This shouldn't happen in the wild, but some tests
					// exercise it.
					return nil, roachpb.NewErrorf("truncation resulted in empty batch on [%s,%s): %s",
						rs.Key, rs.EndKey, ba)
				}
				if trErr != nil {
					return nil, roachpb.NewError(trErr)
				}

				return ds.sendSingleRange(sp, truncBA, desc)
			}()
			// If sending succeeded, break this loop.
			if pErr == nil {
				finished = true
				break
			}

			if log.V(1) {
				log.Warningf("failed to invoke %s: %s", ba, pErr)
			}
			sp.LogEvent(fmt.Sprintf("reply error: %T", pErr.GetDetail()))

			// Error handling below.
			// If retryable, allow retry. For range not found or range
			// key mismatch errors, we don't backoff on the retry,
			// but reset the backoff loop so we can retry immediately.
			switch tErr := pErr.GetDetail().(type) {
			case *roachpb.SendError:
				// For an RPC error to occur, we must've been unable to contact
				// any replicas. In this case, likely all nodes are down (or
				// not getting back to us within a reasonable amount of time).
				// We may simply not be trying to talk to the up-to-date
				// replicas, so clearing the descriptor here should be a good
				// idea.
				// TODO(tschottdorf): If a replica group goes dead, this
				// will cause clients to put high read pressure on the first
				// range, so there should be some rate limiting here.
				evictDesc()
				if tErr.CanRetry() {
					continue
				}
			case *roachpb.RangeNotFoundError, *roachpb.RangeKeyMismatchError:
				// Range descriptor might be out of date - evict it.
				evictDesc()
				// On addressing errors, don't backoff; retry immediately.
				r.Reset()
				if log.V(1) {
					log.Warning(tErr)
				}
				// On retries, allow [uncommitted] intents on range descriptor
				// lookups to be returned 50% of the time in order to succeed
				// at finding the transaction record pointed to by the intent
				// itself. The 50% probability of returning either the current
				// intent or the previously committed value balances between
				// the two cases where the intent's txn hasn't yet been
				// committed (the previous value is correct), or the intent's
				// txn has been committed (the intent value is correct).
				considerIntents = true
				continue
			case *roachpb.NotLeaderError:
				newLeader := tErr.Leader
				if newLeader != nil {
					// Verify that leader is a known replica according to the
					// descriptor. If not, we've got a stale range descriptor;
					// evict cache.
					if i, _ := desc.FindReplica(newLeader.StoreID); i == -1 {
						if log.V(1) {
							log.Infof("error indicates unknown leader %s, expunging descriptor %s", newLeader, desc)
						}
						evictDesc()
					}
				} else {
					// If the new leader is unknown, we were talking to a
					// replica that is partitioned away from the majority. Our
					// range descriptor may be stale, so clear the cache.
					//
					// TODO(bdarnell): An unknown-leader error doesn't
					// necessarily mean our descriptor is stale. Ideally we
					// would treat these errors more like SendError: retry on
					// another node (at a lower level), and then if it reaches
					// this level then we know we've exhausted our options and
					// must clear the cache.
					evictDesc()
					newLeader = &roachpb.ReplicaDescriptor{}
				}
				// Next, cache the new leader.
				ds.updateLeaderCache(roachpb.RangeID(desc.RangeID), *newLeader)
				if log.V(1) {
					log.Warning(tErr)
				}
				r.Reset()
				continue
			case retry.Retryable:
				if tErr.CanRetry() {
					if log.V(1) {
						log.Warning(tErr)
					}
					continue
				}
			}
			break
		}

		// Immediately return if querying a range failed non-retryably.
		if pErr != nil {
			return nil, pErr, false
		} else if !finished {
			select {
			case <-ds.rpcRetryOptions.Closer:
				return nil, roachpb.NewError(&roachpb.NodeUnavailableError{}), false
			default:
				log.Fatal("exited retry loop with nil error but finished=false")
			}
		}

		ba.Txn.Update(curReply.Txn)

		if br == nil {
			// First response from a Range.
			br = curReply
		} else {
			// This was the second or later call in a cross-Range request.
			// Combine the new response with the existing one.
			if err := br.Combine(curReply); err != nil {
				return nil, roachpb.NewError(err), false
			}
		}

		// If this request has a bound (such as MaxResults in
		// ScanRequest) and we are going to query at least one more range,
		// check whether enough rows have been retrieved.
		// TODO(tschottdorf): need tests for executing a multi-range batch
		// with various bounded requests which saturate at different times.
		if needAnother {
			// Start with the assumption that all requests are saturated.
			// Below, we look at each and decide whether that's true.
			// Everything that is indeed saturated is "masked out" from the
			// batch request; only if that's all requests does needAnother
			// remain false.
			needAnother = false
			if br == nil {
				// Clone ba.Requests. This is because we're multi-range, and
				// some requests may be bounded, which could lead to them being
				// masked out once they're saturated. We don't want to risk
				// removing requests that way in the "master copy" since that
				// could lead to omitting requests in certain retry scenarios.
				ba.Requests = append([]roachpb.RequestUnion(nil), ba.Requests...)
			}
			for i, union := range ba.Requests {
				args := union.GetInner()
				if _, ok := args.(*roachpb.NoopRequest); ok {
					// NoopRequests are skipped.
					continue
				}
				boundedArg, ok := args.(roachpb.Bounded)
				if !ok {
					// Non-bounded request. We will have to query all ranges.
					needAnother = true
					continue
				}
				prevBound := boundedArg.GetBound()
				cReply, ok := curReply.Responses[i].GetInner().(roachpb.Countable)
				if !ok || prevBound <= 0 {
					// Request bounded, but without max results. Again, will
					// need to query everything we can. The case in which the reply
					// isn't countable occurs when the request wasn't active for
					// that range (since it didn't apply to it), so the response
					// is a NoopResponse.
					needAnother = true
					continue
				}
				nextBound := prevBound - cReply.Count()
				if nextBound <= 0 {
					// We've hit max results for this piece of the batch. Mask
					// it out (we've copied the requests slice above, so this
					// is kosher).
					ba.Requests[i].Reset() // necessary (no one-of?)
					if !ba.Requests[i].SetValue(&roachpb.NoopRequest{}) {
						panic("RequestUnion excludes NoopRequest")
					}
					continue
				}
				// The request isn't saturated yet.
				needAnother = true
				boundedArg.SetBound(nextBound)
			}
		}

		// If this was the last range accessed by this call, exit loop.
		if !needAnother {
			return br, nil, false
		}

		if isReverse {
			// In next iteration, query previous range.
			// We use the StartKey of the current descriptor as opposed to the
			// EndKey of the previous one since that doesn't have bugs when
			// stale descriptors come into play.
			rs.EndKey = prev(ba, desc.StartKey)
		} else {
			// In next iteration, query next range.
			// It's important that we use the EndKey of the current descriptor
			// as opposed to the StartKey of the next one: if the former is stale,
			// it's possible that the next range has since merged the subsequent
			// one, and unless both descriptors are stale, the next descriptor's
			// StartKey would move us to the beginning of the current range,
			// resulting in a duplicate scan.
			rs.Key = next(ba, desc.EndKey)
		}
		sp.LogEvent("querying next range")
	}
}
示例#8
0
// resolveIntents resolves the given intents. For those which are
// local to the range, we submit directly to the local Raft instance;
// all non-local intents are resolved asynchronously in a batch. If
// `wait` is true, all operations are carried out synchronously and an
// error is returned. Otherwise, the call returns without error as
// soon as all local resolve commands have been **proposed** (not
// executed). This ensures that if a waiting client retries
// immediately after calling this function, it will not hit the same
// intents again.
func (ir *intentResolver) resolveIntents(ctx context.Context, r *Replica,
	intents []roachpb.Intent, wait bool, poison bool) *roachpb.Error {

	sp, cleanupSp := tracing.SpanFromContext(opReplica, ir.store.Tracer(), ctx)
	defer cleanupSp()

	// We're doing async stuff below; those need new traces.
	ctx = opentracing.ContextWithSpan(ctx, nil)
	sp.LogEvent(fmt.Sprintf("resolving intents [wait=%t]", wait))

	var reqsRemote []roachpb.Request
	baLocal := roachpb.BatchRequest{}
	for i := range intents {
		intent := intents[i] // avoids a race in `i, intent := range ...`
		var resolveArgs roachpb.Request
		var local bool // whether this intent lives on this Range
		{
			if len(intent.EndKey) == 0 {
				resolveArgs = &roachpb.ResolveIntentRequest{
					Span:      intent.Span,
					IntentTxn: intent.Txn,
					Status:    intent.Status,
					Poison:    poison,
				}
				local = r.ContainsKey(intent.Key)
			} else {
				resolveArgs = &roachpb.ResolveIntentRangeRequest{
					Span:      intent.Span,
					IntentTxn: intent.Txn,
					Status:    intent.Status,
					Poison:    poison,
				}
				local = r.ContainsKeyRange(intent.Key, intent.EndKey)
			}
		}

		// If the intent isn't (completely) local, we'll need to send an external request.
		// We'll batch them all up and send at the end.
		if local {
			baLocal.Add(resolveArgs)
		} else {
			reqsRemote = append(reqsRemote, resolveArgs)
		}
	}

	// The local batch goes directly to Raft.
	var wg sync.WaitGroup
	if len(baLocal.Requests) > 0 {
		action := func() *roachpb.Error {
			// Trace this under the ID of the intent owner.
			sp := r.store.Tracer().StartSpan("resolve intents")
			defer sp.Finish()
			ctx = opentracing.ContextWithSpan(ctx, sp)
			// Always operate with a timeout when resolving intents: this
			// prevents rare shutdown timeouts in tests.
			ctxWithTimeout, cancel := context.WithTimeout(ctx, base.NetworkTimeout)
			defer cancel()
			_, pErr := r.addWriteCmd(ctxWithTimeout, baLocal, &wg)
			return pErr
		}
		wg.Add(1)
		if wait || !r.store.Stopper().RunLimitedAsyncTask(ir.sem, func() {
			if err := action(); err != nil {
				log.Warningf("unable to resolve local intents; %s", err)
			}
		}) {
			// Still run the task when draining. Our caller already has a task and
			// going async here again is merely for performance, but some intents
			// need to be resolved because they might block other tasks. See #1684.
			// Note that handleSkippedIntents has a TODO in case #1684 comes back.
			if err := action(); err != nil {
				return err
			}
		}
	}

	// Resolve all of the intents which aren't local to the Range.
	if len(reqsRemote) > 0 {
		b := &client.Batch{}
		b.InternalAddRequest(reqsRemote...)
		action := func() *roachpb.Error {
			// TODO(tschottdorf): no tracing here yet.
			return r.store.DB().Run(b)
		}
		if wait || !r.store.Stopper().RunLimitedAsyncTask(ir.sem, func() {
			if err := action(); err != nil {
				log.Warningf("unable to resolve external intents: %s", err)
			}
		}) {
			// As with local intents, try async to not keep the caller waiting, but
			// when draining just go ahead and do it synchronously. See #1684.
			if err := action(); err != nil {
				return err
			}
		}
	}

	// Wait until the local ResolveIntents batch has been submitted to
	// raft. No-op if all were non-local.
	wg.Wait()
	return nil
}
示例#9
0
// maybePushTransaction tries to push the conflicting transaction(s)
// responsible for the given intents: either move its
// timestamp forward on a read/write conflict, abort it on a
// write/write conflict, or do nothing if the transaction is no longer
// pending.
//
// Returns a slice of intents which can now be resolved, and an error.
// The returned intents should be resolved via
// intentResolver.resolveIntents regardless of any error returned by
// maybePushTransaction, but if the error is non-nil then some of the
// conflicting transactions may still be pending.
//
// If skipIfInFlight is true, then no PushTxns will be sent and no
// intents will be returned for any transaction for which there is
// another push in progress. This should only be used by callers who
// are not relying on the side effect of a push (i.e. only
// pushType==PUSH_TOUCH), and who also don't need to synchronize with
// the resolution of those intents (e.g. asynchronous resolutions of
// intents skipped on inconsistent reads).
//
// Callers are involved with
// a) conflict resolution for commands being executed at the Store with the
//    client waiting,
// b) resolving intents encountered during inconsistent operations, and
// c) resolving intents upon EndTransaction which are not local to the given
//    range. This is the only path in which the transaction is going to be
//    in non-pending state and doesn't require a push.
func (ir *intentResolver) maybePushTransactions(ctx context.Context, intents []roachpb.Intent,
	h roachpb.Header, pushType roachpb.PushTxnType, skipIfInFlight bool) (
	[]roachpb.Intent, *roachpb.Error) {

	now := ir.store.Clock().Now()

	pusherTxn := h.Txn
	// If there's no pusher, we communicate a priority by sending an empty
	// txn with only the priority set.
	if pusherTxn == nil {
		pusherTxn = &roachpb.Transaction{
			Priority: roachpb.MakePriority(h.UserPriority),
		}
	}

	sp, cleanupSp := tracing.SpanFromContext(opStore, ir.store.Tracer(), ctx)
	defer cleanupSp()
	sp.LogEvent("intent resolution")

	// Split intents into those we need to push and those which are good to
	// resolve.
	ir.mu.Lock()
	// TODO(tschottdorf): can optimize this and use same underlying slice.
	var pushIntents, resolveIntents []roachpb.Intent
	for _, intent := range intents {
		if intent.Status != roachpb.PENDING {
			// The current intent does not need conflict resolution
			// because the transaction is already finalized.
			// TODO(bdarnell): can this happen any more?
			resolveIntents = append(resolveIntents, intent)
		} else if _, ok := ir.mu.inFlight[*intent.Txn.ID]; ok && skipIfInFlight {
			// Another goroutine is working on this transaction so we can
			// skip it.
			if log.V(1) {
				log.Infof("skipping PushTxn for %s; attempt already in flight", intent.Txn.ID)
			}
			continue
		} else {
			pushIntents = append(pushIntents, intent)
			ir.mu.inFlight[*intent.Txn.ID]++
		}
	}
	ir.mu.Unlock()

	// Attempt to push the transaction(s) which created the conflicting intent(s).
	var pushReqs []roachpb.Request
	for _, intent := range pushIntents {
		pushReqs = append(pushReqs, &roachpb.PushTxnRequest{
			Span: roachpb.Span{
				Key: intent.Txn.Key,
			},
			PusherTxn: *pusherTxn,
			PusheeTxn: intent.Txn,
			PushTo:    h.Timestamp,
			// The timestamp is used by PushTxn for figuring out whether the
			// transaction is abandoned. If we used the argument's timestamp
			// here, we would run into busy loops because that timestamp
			// usually stays fixed among retries, so it will never realize
			// that a transaction has timed out. See #877.
			Now:      now,
			PushType: pushType,
		})
	}
	// TODO(kaneda): Set the transaction in the header so that the
	// txn is correctly propagated in an error response.
	b := &client.Batch{}
	b.InternalAddRequest(pushReqs...)
	br, err := ir.store.db.RunWithResponse(b)
	ir.mu.Lock()
	for _, intent := range pushIntents {
		ir.mu.inFlight[*intent.Txn.ID]--
		if ir.mu.inFlight[*intent.Txn.ID] == 0 {
			delete(ir.mu.inFlight, *intent.Txn.ID)
		}
	}
	ir.mu.Unlock()
	if err != nil {
		// TODO(bdarnell): return resolveIntents even on error.
		return nil, err
	}

	for i, intent := range pushIntents {
		pushee := br.Responses[i].GetInner().(*roachpb.PushTxnResponse).PusheeTxn
		intent.Txn = pushee.TxnMeta
		intent.Status = pushee.Status
		resolveIntents = append(resolveIntents, intent)
	}
	return resolveIntents, nil
}