// startStats blocks and periodically logs transaction statistics (throughput, // success rates, durations, ...). Note that this only captures write txns, // since read-only txns are stateless as far as TxnCoordSender is concerned. // stats). func (tc *TxnCoordSender) startStats() { res := time.Millisecond // for duration logging resolution var statusLogTimer util.Timer defer statusLogTimer.Stop() scale := metric.Scale1M for { statusLogTimer.Reset(statusLogInterval) select { case <-statusLogTimer.C: statusLogTimer.Read = true if !log.V(1) { continue } // Take a snapshot of metrics. There's some chance of skew, since the snapshots are // not done atomically, but that should be fine for these debug stats. metrics := tc.metrics durations := metrics.Durations[scale].Current() restarts := metrics.Restarts.Current() commitRate := metrics.Commits.Rates[scale].Value() commit1PCRate := metrics.Commits1PC.Rates[scale].Value() abortRate := metrics.Aborts.Rates[scale].Value() abandonRate := metrics.Abandons.Rates[scale].Value() // Show transaction stats over the last minute. Maybe this should be shorter in the future. // We'll revisit if we get sufficient feedback. totalRate := commitRate + abortRate + abandonRate var pCommitted, pCommitted1PC, pAbandoned, pAborted float64 if totalRate > 0 { pCommitted = 100 * (commitRate / totalRate) pCommitted1PC = 100 * (commit1PCRate / totalRate) pAborted = 100 * (abortRate / totalRate) pAbandoned = 100 * (abandonRate / totalRate) } dMean := durations.Mean() dDev := durations.StdDev() dMax := durations.Max() rMean := restarts.Mean() rDev := restarts.StdDev() rMax := restarts.Max() num := durations.TotalCount() log.Infof( "txn coordinator: %.2f txn/sec, %.2f/%.2f/%.2f/%.2f %%cmmt/cmmt1pc/abrt/abnd, %s/%s/%s avg/σ/max duration, %.1f/%.1f/%d avg/σ/max restarts (%d samples)", totalRate, pCommitted, pCommitted1PC, pAborted, pAbandoned, util.TruncateDuration(time.Duration(dMean), res), util.TruncateDuration(time.Duration(dDev), res), util.TruncateDuration(time.Duration(dMax), res), rMean, rDev, rMax, num, ) case <-tc.stopper.ShouldStop(): return } } }
// startStats blocks and periodically logs transaction statistics (throughput, // success rates, durations, ...). // TODO(tschottdorf): Use a proper metrics subsystem for this (+the store-level // stats). // TODO(mrtracy): Add this to TimeSeries. func (tc *TxnCoordSender) startStats() { res := time.Millisecond // for duration logging resolution lastNow := tc.clock.PhysicalNow() for { select { case <-time.After(statusLogInterval): if !log.V(1) { continue } tc.Lock() curStats := tc.txnStats tc.txnStats = txnCoordStats{} tc.Unlock() now := tc.clock.PhysicalNow() // Tests have weird clocks. if now-lastNow <= 0 { continue } num := len(curStats.durations) dMax := time.Duration(stats.Max(curStats.durations)) dMean := time.Duration(stats.Mean(curStats.durations)) dDev := time.Duration(stats.StdDevP(curStats.durations)) rMax := stats.Max(curStats.restarts) rMean := stats.Mean(curStats.restarts) rDev := stats.StdDevP(curStats.restarts) rate := float64(int64(num)*int64(time.Second)) / float64(now-lastNow) var pCommitted, pAbandoned, pAborted float32 if num > 0 { pCommitted = 100 * float32(curStats.committed) / float32(num) pAbandoned = 100 * float32(curStats.abandoned) / float32(num) pAborted = 100 * float32(curStats.aborted) / float32(num) } log.Infof("txn coordinator: %.2f txn/sec, %.2f/%.2f/%.2f %%cmmt/abrt/abnd, %s/%s/%s avg/σ/max duration, %.1f/%.1f/%.1f avg/σ/max restarts (%d samples)", rate, pCommitted, pAborted, pAbandoned, util.TruncateDuration(dMean, res), util.TruncateDuration(dDev, res), util.TruncateDuration(dMax, res), rMean, rDev, rMax, num) lastNow = now case <-tc.stopper.ShouldStop(): return } } }
// sendOne sends a single call via the wrapped sender. If the call is // part of a transaction, the TxnCoordSender adds the transaction to a // map of active transactions and begins heartbeating it. Every // subsequent call for the same transaction updates the lastUpdate // timestamp to prevent live transactions from being considered // abandoned and garbage collected. Read/write mutating requests have // their key or key range added to the transaction's interval tree of // key ranges for eventual cleanup via resolved write intents. // // On success, and if the call is part of a transaction, the affected // key range is recorded as live intents for eventual cleanup upon // transaction commit. Upon successful txn commit, initiates cleanup // of intents. func (tc *TxnCoordSender) sendOne(ctx context.Context, call proto.Call) { var startNS int64 header := call.Args.Header() trace := tracer.FromCtx(ctx) var id string // optional transaction ID if header.Txn != nil { // If this call is part of a transaction... id = string(header.Txn.ID) // Verify that if this Transaction is not read-only, we have it on // file. If not, refuse writes - the client must have issued a write on // another coordinator previously. if header.Txn.Writing && proto.IsTransactionWrite(call.Args) { tc.Lock() _, ok := tc.txns[id] tc.Unlock() if !ok { call.Reply.Header().SetGoError(util.Errorf( "transaction must not write on multiple coordinators")) return } } // Set the timestamp to the original timestamp for read-only // commands and to the transaction timestamp for read/write // commands. if proto.IsReadOnly(call.Args) { header.Timestamp = header.Txn.OrigTimestamp } else { header.Timestamp = header.Txn.Timestamp } if args, ok := call.Args.(*proto.EndTransactionRequest); ok { // Remember when EndTransaction started in case we want to // be linearizable. startNS = tc.clock.PhysicalNow() // EndTransaction must have its key set to that of the txn. header.Key = header.Txn.Key if len(args.Intents) > 0 { // TODO(tschottdorf): it may be useful to allow this later. // That would be part of a possible plan to allow txns which // write on multiple coordinators. call.Reply.Header().SetGoError(util.Errorf( "client must not pass intents to EndTransaction")) return } tc.Lock() txnMeta, metaOK := tc.txns[id] if id != "" && metaOK { args.Intents = txnMeta.intents() } tc.Unlock() if !metaOK { // If we don't have the transaction, then this must be a retry // by the client. We can no longer reconstruct a correct // request so we must fail. // // TODO(bdarnell): if we had a GetTransactionStatus API then // we could lookup the transaction and return either nil or // TransactionAbortedError instead of this ambivalent error. call.Reply.Header().SetGoError(util.Errorf( "transaction is already committed or aborted")) return } else if len(args.Intents) == 0 { // If there aren't any intents, then there's factually no // transaction to end. Read-only txns have all of their state in // the client. call.Reply.Header().SetGoError(util.Errorf( "cannot commit a read-only transaction")) return } } } // Send the command through wrapped sender. tc.wrapped.Send(ctx, call) // For transactional calls, need to track & update the transaction. if header.Txn != nil { respHeader := call.Reply.Header() if respHeader.Txn == nil { // When empty, simply use the request's transaction. // This is expected: the Range doesn't bother copying unless the // object changes. respHeader.Txn = gogoproto.Clone(header.Txn).(*proto.Transaction) } tc.updateResponseTxn(header, respHeader) } if txn := call.Reply.Header().Txn; txn != nil { if !header.Txn.Equal(txn) { panic("transaction ID changed") } tc.Lock() txnMeta := tc.txns[id] // If this transactional command leaves transactional intents, add the key // or key range to the intents map. If the transaction metadata doesn't yet // exist, create it. if call.Reply.Header().GoError() == nil { if proto.IsTransactionWrite(call.Args) { if txnMeta == nil { txn.Writing = true trace.Event("coordinator spawns") txnMeta = &txnMetadata{ txn: *txn, keys: cache.NewIntervalCache(cache.Config{Policy: cache.CacheNone}), firstUpdateNanos: tc.clock.PhysicalNow(), lastUpdateNanos: tc.clock.PhysicalNow(), timeoutDuration: tc.clientTimeout, txnEnd: make(chan struct{}), } tc.txns[id] = txnMeta if !tc.stopper.RunAsyncTask(func() { tc.heartbeatLoop(id) }) { // The system is already draining and we can't start the // heartbeat. We refuse new transactions for now because // they're likely not going to have all intents committed. // In principle, we can relax this as needed though. call.Reply.Header().SetGoError(&proto.NodeUnavailableError{}) tc.Unlock() tc.unregisterTxn(id) return } } txnMeta.addKeyRange(header.Key, header.EndKey) } // Update our record of this transaction. if txnMeta != nil { txnMeta.txn = *txn txnMeta.setLastUpdate(tc.clock.PhysicalNow()) } } tc.Unlock() } // Cleanup intents and transaction map if end of transaction. switch t := call.Reply.Header().GoError().(type) { case *proto.TransactionStatusError: // Likely already committed or more obscure errors such as epoch or // timestamp regressions; consider it dead. tc.cleanupTxn(trace, t.Txn) case *proto.TransactionAbortedError: // If already aborted, cleanup the txn on this TxnCoordSender. tc.cleanupTxn(trace, t.Txn) case *proto.OpRequiresTxnError: // Run a one-off transaction with that single command. if log.V(1) { log.Infof("%s: auto-wrapping in txn and re-executing", call.Method()) } // TODO(tschottdorf): this part is awkward. Consider resending here // without starting a new call, which is hard to trace. Plus, the // below depends on default configuration. tmpDB, err := client.Open( fmt.Sprintf("//%s?priority=%d", call.Args.Header().User, call.Args.Header().GetUserPriority()), client.SenderOpt(tc)) if err != nil { log.Warning(err) return } call.Reply.Reset() if err := tmpDB.Txn(func(txn *client.Txn) error { txn.SetDebugName("auto-wrap", 0) b := &client.Batch{} b.InternalAddCall(call) return txn.CommitInBatch(b) }); err != nil { log.Warning(err) } case nil: if txn := call.Reply.Header().Txn; txn != nil { if _, ok := call.Args.(*proto.EndTransactionRequest); ok { // If the --linearizable flag is set, we want to make sure that // all the clocks in the system are past the commit timestamp // of the transaction. This is guaranteed if either // - the commit timestamp is MaxOffset behind startNS // - MaxOffset ns were spent in this function // when returning to the client. Below we choose the option // that involves less waiting, which is likely the first one // unless a transaction commits with an odd timestamp. if tsNS := txn.Timestamp.WallTime; startNS > tsNS { startNS = tsNS } sleepNS := tc.clock.MaxOffset() - time.Duration(tc.clock.PhysicalNow()-startNS) if tc.linearizable && sleepNS > 0 { defer func() { if log.V(1) { log.Infof("%v: waiting %s on EndTransaction for linearizability", txn.Short(), util.TruncateDuration(sleepNS, time.Millisecond)) } time.Sleep(sleepNS) }() } if txn.Status != proto.PENDING { tc.cleanupTxn(trace, *txn) } } } } }
// startStats blocks and periodically logs transaction statistics (throughput, // success rates, durations, ...). Note that this only captures write txns, // since read-only txns are stateless as far as TxnCoordSender is concerned. // stats). // TODO(mrtracy): Add this to TimeSeries. func (tc *TxnCoordSender) startStats() { res := time.Millisecond // for duration logging resolution lastNow := tc.clock.PhysicalNow() for { select { case <-time.After(statusLogInterval): if !log.V(1) { continue } tc.Lock() curStats := tc.txnStats tc.txnStats = txnCoordStats{} tc.Unlock() now := tc.clock.PhysicalNow() // Tests have weird clocks. if now-lastNow <= 0 { continue } num := len(curStats.durations) // Only compute when non-empty input. var dMax, dMean, dDev, rMax, rMean, rDev float64 var err error if num > 0 { // There should never be an error in the below // computations. dMax, err = stats.Max(curStats.durations) if err != nil { panic(err) } dMean, err = stats.Mean(curStats.durations) if err != nil { panic(err) } dDev, err = stats.StdDevP(curStats.durations) if err != nil { panic(err) } rMax, err = stats.Max(curStats.restarts) if err != nil { panic(err) } rMean, err = stats.Mean(curStats.restarts) if err != nil { panic(err) } rDev, err = stats.StdDevP(curStats.restarts) if err != nil { panic(err) } } rate := float64(int64(num)*int64(time.Second)) / float64(now-lastNow) var pCommitted, pAbandoned, pAborted float32 if fNum := float32(num); fNum > 0 { pCommitted = 100 * float32(curStats.committed) / fNum pAbandoned = 100 * float32(curStats.abandoned) / fNum pAborted = 100 * float32(curStats.aborted) / fNum } log.Infof( "txn coordinator: %.2f txn/sec, %.2f/%.2f/%.2f %%cmmt/abrt/abnd, %s/%s/%s avg/σ/max duration, %.1f/%.1f/%.1f avg/σ/max restarts (%d samples)", rate, pCommitted, pAborted, pAbandoned, util.TruncateDuration(time.Duration(dMean), res), util.TruncateDuration(time.Duration(dDev), res), util.TruncateDuration(time.Duration(dMax), res), rMean, rDev, rMax, num, ) lastNow = now case <-tc.stopper.ShouldStop(): return } } }
// Send implements the batch.Sender interface. If the request is part of a // transaction, the TxnCoordSender adds the transaction to a map of active // transactions and begins heartbeating it. Every subsequent request for the // same transaction updates the lastUpdate timestamp to prevent live // transactions from being considered abandoned and garbage collected. // Read/write mutating requests have their key or key range added to the // transaction's interval tree of key ranges for eventual cleanup via resolved // write intents; they're tagged to an outgoing EndTransaction request, with // the receiving replica in charge of resolving them. func (tc *TxnCoordSender) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) { if err := tc.maybeBeginTxn(&ba); err != nil { return nil, roachpb.NewError(err) } ba.CmdID = ba.GetOrCreateCmdID(tc.clock.PhysicalNow()) var startNS int64 // This is the earliest point at which the request has a ClientCmdID and/or // TxnID (if applicable). Begin a Trace which follows this request. trace := tc.tracer.NewTrace(tracer.Coord, &ba) defer trace.Finalize() defer trace.Epoch("sending batch")() ctx = tracer.ToCtx(ctx, trace) var id string // optional transaction ID if ba.Txn != nil { // If this request is part of a transaction... id = string(ba.Txn.ID) // Verify that if this Transaction is not read-only, we have it on // file. If not, refuse writes - the client must have issued a write on // another coordinator previously. if ba.Txn.Writing && ba.IsTransactionWrite() { tc.Lock() _, ok := tc.txns[id] tc.Unlock() if !ok { return nil, roachpb.NewError(util.Errorf("transaction must not write on multiple coordinators")) } } // Set the timestamp to the original timestamp for read-only // commands and to the transaction timestamp for read/write // commands. if ba.IsReadOnly() { ba.Timestamp = ba.Txn.OrigTimestamp } else { ba.Timestamp = ba.Txn.Timestamp } if rArgs, ok := ba.GetArg(roachpb.EndTransaction); ok { et := rArgs.(*roachpb.EndTransactionRequest) if len(et.Key) != 0 { return nil, roachpb.NewError(util.Errorf("EndTransaction must not have a Key set")) } et.Key = ba.Txn.Key // Remember when EndTransaction started in case we want to // be linearizable. startNS = tc.clock.PhysicalNow() if len(et.Intents) > 0 { // TODO(tschottdorf): it may be useful to allow this later. // That would be part of a possible plan to allow txns which // write on multiple coordinators. return nil, roachpb.NewError(util.Errorf("client must not pass intents to EndTransaction")) } tc.Lock() txnMeta, metaOK := tc.txns[id] if id != "" && metaOK { et.Intents = txnMeta.intents() } tc.Unlock() if intents := ba.GetIntents(); len(intents) > 0 { // Writes in Batch, so EndTransaction is fine. Should add // outstanding intents to EndTransaction, though. // TODO(tschottdorf): possible issues when the batch fails, // but the intents have been added anyways. // TODO(tschottdorf): some of these intents may be covered // by others, for example {[a,b), a}). This can lead to // some extra requests when those are non-local to the txn // record. But it doesn't seem worth optimizing now. et.Intents = append(et.Intents, intents...) } else if !metaOK { // If we don't have the transaction, then this must be a retry // by the client. We can no longer reconstruct a correct // request so we must fail. // // TODO(bdarnell): if we had a GetTransactionStatus API then // we could lookup the transaction and return either nil or // TransactionAbortedError instead of this ambivalent error. return nil, roachpb.NewError(util.Errorf("transaction is already committed or aborted")) } if len(et.Intents) == 0 { // If there aren't any intents, then there's factually no // transaction to end. Read-only txns have all of their state in // the client. return nil, roachpb.NewError(util.Errorf("cannot commit a read-only transaction")) } if log.V(1) { for _, intent := range et.Intents { trace.Event(fmt.Sprintf("intent: [%s,%s)", intent.Key, intent.EndKey)) } } } } // Send the command through wrapped sender, taking appropriate measures // on error. var br *roachpb.BatchResponse { var pErr *roachpb.Error br, pErr = tc.wrapped.Send(ctx, ba) if _, ok := pErr.GoError().(*roachpb.OpRequiresTxnError); ok { br, pErr = tc.resendWithTxn(ba) } if pErr := tc.updateState(ctx, ba, br, pErr); pErr != nil { return nil, pErr } } if br.Txn == nil { return br, nil } if _, ok := ba.GetArg(roachpb.EndTransaction); !ok { return br, nil } // If the --linearizable flag is set, we want to make sure that // all the clocks in the system are past the commit timestamp // of the transaction. This is guaranteed if either // - the commit timestamp is MaxOffset behind startNS // - MaxOffset ns were spent in this function // when returning to the client. Below we choose the option // that involves less waiting, which is likely the first one // unless a transaction commits with an odd timestamp. if tsNS := br.Txn.Timestamp.WallTime; startNS > tsNS { startNS = tsNS } sleepNS := tc.clock.MaxOffset() - time.Duration(tc.clock.PhysicalNow()-startNS) if tc.linearizable && sleepNS > 0 { defer func() { if log.V(1) { log.Infof("%v: waiting %s on EndTransaction for linearizability", br.Txn.Short(), util.TruncateDuration(sleepNS, time.Millisecond)) } time.Sleep(sleepNS) }() } if br.Txn.Status != roachpb.PENDING { tc.cleanupTxn(trace, *br.Txn) } return br, nil }
// Send implements the batch.Sender interface. If the request is part of a // transaction, the TxnCoordSender adds the transaction to a map of active // transactions and begins heartbeating it. Every subsequent request for the // same transaction updates the lastUpdate timestamp to prevent live // transactions from being considered abandoned and garbage collected. // Read/write mutating requests have their key or key range added to the // transaction's interval tree of key ranges for eventual cleanup via resolved // write intents; they're tagged to an outgoing EndTransaction request, with // the receiving replica in charge of resolving them. func (tc *TxnCoordSender) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) { { // Start new or pick up active trace and embed its trace metadata into // header for use by RPC recipients. From here on, there's always an active // Trace, though its overhead is small unless it's sampled. sp := opentracing.SpanFromContext(ctx) if sp == nil { sp = tc.tracer.StartSpan(opTxnCoordSender) defer sp.Finish() ctx = opentracing.ContextWithSpan(ctx, sp) } // TODO(tschottdorf): To get rid of the spurious alloc below we need to // implement the carrier interface on ba.Header or make Span non-nullable, // both of which force all of ba on the Heap. It's already there, so may // not be a big deal, but ba should live on the stack. Also not easy to use // a buffer pool here since anything that goes into the RPC layer could be // used by goroutines we didn't wait for. if ba.Header.Trace == nil { ba.Header.Trace = &tracing.Span{} } if err := tc.tracer.Inject(sp, basictracer.Delegator, ba.Trace); err != nil { return nil, roachpb.NewError(err) } } startNS := tc.clock.PhysicalNow() if ba.Txn != nil { // If this request is part of a transaction... if err := tc.maybeBeginTxn(&ba); err != nil { return nil, roachpb.NewError(err) } txnID := *ba.Txn.ID // Verify that if this Transaction is not read-only, we have it on file. // If not, refuse further operations - the transaction was aborted due // to a timeout or the client must have issued a write on another // coordinator previously. if ba.Txn.Writing { tc.Lock() _, ok := tc.txns[txnID] tc.Unlock() if !ok { pErr := roachpb.NewErrorf("writing transaction timed out, was aborted, " + "or ran on multiple coordinators") return nil, pErr } } if rArgs, ok := ba.GetArg(roachpb.EndTransaction); ok { et := rArgs.(*roachpb.EndTransactionRequest) if len(et.Key) != 0 { return nil, roachpb.NewErrorf("EndTransaction must not have a Key set") } et.Key = ba.Txn.Key if len(et.IntentSpans) > 0 { // TODO(tschottdorf): it may be useful to allow this later. // That would be part of a possible plan to allow txns which // write on multiple coordinators. return nil, roachpb.NewErrorf("client must not pass intents to EndTransaction") } tc.Lock() txnMeta, metaOK := tc.txns[txnID] { // Populate et.IntentSpans, taking into account both existing // writes (if any) and new writes in this batch, and taking // care to perform proper deduplication. var keys interval.RangeGroup if metaOK { keys = txnMeta.keys } else { keys = interval.NewRangeTree() } ba.IntentSpanIterate(func(key, endKey roachpb.Key) { addKeyRange(keys, key, endKey) }) et.IntentSpans = collectIntentSpans(keys) } tc.Unlock() if len(et.IntentSpans) > 0 { // All good, proceed. } else if !metaOK { // If we don't have the transaction, then this must be a retry // by the client. We can no longer reconstruct a correct // request so we must fail. // // TODO(bdarnell): if we had a GetTransactionStatus API then // we could lookup the transaction and return either nil or // TransactionAbortedError instead of this ambivalent error. return nil, roachpb.NewErrorf("transaction is already committed or aborted") } if len(et.IntentSpans) == 0 { // If there aren't any intents, then there's factually no // transaction to end. Read-only txns have all of their state in // the client. return nil, roachpb.NewErrorf("cannot commit a read-only transaction") } if log.V(1) { for _, intent := range et.IntentSpans { log.Trace(ctx, fmt.Sprintf("intent: [%s,%s)", intent.Key, intent.EndKey)) } } } } // Send the command through wrapped sender, taking appropriate measures // on error. var br *roachpb.BatchResponse { var pErr *roachpb.Error br, pErr = tc.wrapped.Send(ctx, ba) if _, ok := pErr.GetDetail().(*roachpb.OpRequiresTxnError); ok { // TODO(tschottdorf): needs to keep the trace. br, pErr = tc.resendWithTxn(ba) } if pErr = tc.updateState(startNS, ctx, ba, br, pErr); pErr != nil { log.Trace(ctx, fmt.Sprintf("error: %s", pErr)) return nil, pErr } } if br.Txn == nil { return br, nil } if _, ok := ba.GetArg(roachpb.EndTransaction); !ok { return br, nil } // If the --linearizable flag is set, we want to make sure that // all the clocks in the system are past the commit timestamp // of the transaction. This is guaranteed if either // - the commit timestamp is MaxOffset behind startNS // - MaxOffset ns were spent in this function // when returning to the client. Below we choose the option // that involves less waiting, which is likely the first one // unless a transaction commits with an odd timestamp. if tsNS := br.Txn.Timestamp.WallTime; startNS > tsNS { startNS = tsNS } sleepNS := tc.clock.MaxOffset() - time.Duration(tc.clock.PhysicalNow()-startNS) if tc.linearizable && sleepNS > 0 { defer func() { if log.V(1) { log.Infof("%v: waiting %s on EndTransaction for linearizability", br.Txn.ID.Short(), util.TruncateDuration(sleepNS, time.Millisecond)) } time.Sleep(sleepNS) }() } if br.Txn.Status != roachpb.PENDING { tc.cleanupTxn(ctx, *br.Txn) } return br, nil }
// Send implements the batch.Sender interface. If the request is part of a // transaction, the TxnCoordSender adds the transaction to a map of active // transactions and begins heartbeating it. Every subsequent request for the // same transaction updates the lastUpdate timestamp to prevent live // transactions from being considered abandoned and garbage collected. // Read/write mutating requests have their key or key range added to the // transaction's interval tree of key ranges for eventual cleanup via resolved // write intents; they're tagged to an outgoing EndTransaction request, with // the receiving replica in charge of resolving them. func (tc *TxnCoordSender) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) { { // Start new or pick up active trace and embed its trace metadata into // header for use by RPC recipients. From here on, there's always an active // Trace, though its overhead is small unless it's sampled. sp := opentracing.SpanFromContext(ctx) // TODO(radu): once contexts are plumbed correctly, we should use the Tracer // from ctx. tracer := tracing.TracerFromCtx(tc.ctx) if sp == nil { sp = tracer.StartSpan(opTxnCoordSender) defer sp.Finish() ctx = opentracing.ContextWithSpan(ctx, sp) } // TODO(tschottdorf): To get rid of the spurious alloc below we need to // implement the carrier interface on ba.Header or make Span non-nullable, // both of which force all of ba on the Heap. It's already there, so may // not be a big deal, but ba should live on the stack. Also not easy to use // a buffer pool here since anything that goes into the RPC layer could be // used by goroutines we didn't wait for. if ba.Header.Trace == nil { ba.Header.Trace = &tracing.Span{} } else { // We didn't make this object but are about to mutate it, so we // have to take a copy - the original might already have been // passed to the RPC layer. ba.Header.Trace = protoutil.Clone(ba.Header.Trace).(*tracing.Span) } if err := tracer.Inject(sp.Context(), basictracer.Delegator, ba.Trace); err != nil { return nil, roachpb.NewError(err) } } startNS := tc.clock.PhysicalNow() if ba.Txn != nil { // If this request is part of a transaction... if err := tc.maybeBeginTxn(&ba); err != nil { return nil, roachpb.NewError(err) } var et *roachpb.EndTransactionRequest var hasET bool { var rArgs roachpb.Request rArgs, hasET = ba.GetArg(roachpb.EndTransaction) if hasET { et = rArgs.(*roachpb.EndTransactionRequest) if len(et.Key) != 0 { return nil, roachpb.NewErrorf("EndTransaction must not have a Key set") } et.Key = ba.Txn.Key if len(et.IntentSpans) > 0 { // TODO(tschottdorf): it may be useful to allow this later. // That would be part of a possible plan to allow txns which // write on multiple coordinators. return nil, roachpb.NewErrorf("client must not pass intents to EndTransaction") } } } if pErr := func() *roachpb.Error { tc.Lock() defer tc.Unlock() if pErr := tc.maybeRejectClientLocked(ctx, *ba.Txn); pErr != nil { return pErr } if !hasET { return nil } // Everything below is carried out only when trying to commit. // Populate et.IntentSpans, taking into account both any existing // and new writes, and taking care to perform proper deduplication. txnMeta := tc.txns[*ba.Txn.ID] distinctSpans := true if txnMeta != nil { et.IntentSpans = txnMeta.keys // Defensively set distinctSpans to false if we had any previous // requests in this transaction. This effectively limits the distinct // spans optimization to 1pc transactions. distinctSpans = len(txnMeta.keys) == 0 } ba.IntentSpanIterate(func(key, endKey roachpb.Key) { et.IntentSpans = append(et.IntentSpans, roachpb.Span{ Key: key, EndKey: endKey, }) }) // TODO(peter): Populate DistinctSpans on all batches, not just batches // which contain an EndTransactionRequest. var distinct bool // The request might already be used by an outgoing goroutine, so // we can't safely mutate anything in-place (as MergeSpans does). et.IntentSpans = append([]roachpb.Span(nil), et.IntentSpans...) et.IntentSpans, distinct = roachpb.MergeSpans(et.IntentSpans) ba.Header.DistinctSpans = distinct && distinctSpans if len(et.IntentSpans) == 0 { // If there aren't any intents, then there's factually no // transaction to end. Read-only txns have all of their state // in the client. return roachpb.NewErrorf("cannot commit a read-only transaction") } if txnMeta != nil { txnMeta.keys = et.IntentSpans } return nil }(); pErr != nil { return nil, pErr } if hasET && log.V(1) { for _, intent := range et.IntentSpans { log.Tracef(ctx, "intent: [%s,%s)", intent.Key, intent.EndKey) } } } // Send the command through wrapped sender, taking appropriate measures // on error. var br *roachpb.BatchResponse { var pErr *roachpb.Error br, pErr = tc.wrapped.Send(ctx, ba) if _, ok := pErr.GetDetail().(*roachpb.OpRequiresTxnError); ok { // TODO(tschottdorf): needs to keep the trace. br, pErr = tc.resendWithTxn(ba) } if pErr = tc.updateState(startNS, ctx, ba, br, pErr); pErr != nil { log.Tracef(ctx, "error: %s", pErr) return nil, pErr } } if br.Txn == nil { return br, nil } if _, ok := ba.GetArg(roachpb.EndTransaction); !ok { return br, nil } // If the --linearizable flag is set, we want to make sure that // all the clocks in the system are past the commit timestamp // of the transaction. This is guaranteed if either // - the commit timestamp is MaxOffset behind startNS // - MaxOffset ns were spent in this function // when returning to the client. Below we choose the option // that involves less waiting, which is likely the first one // unless a transaction commits with an odd timestamp. if tsNS := br.Txn.Timestamp.WallTime; startNS > tsNS { startNS = tsNS } sleepNS := tc.clock.MaxOffset() - time.Duration(tc.clock.PhysicalNow()-startNS) if tc.linearizable && sleepNS > 0 { defer func() { if log.V(1) { log.Infof(ctx, "%v: waiting %s on EndTransaction for linearizability", br.Txn.ID.Short(), util.TruncateDuration(sleepNS, time.Millisecond)) } time.Sleep(sleepNS) }() } if br.Txn.Status != roachpb.PENDING { tc.Lock() tc.cleanupTxnLocked(ctx, *br.Txn) tc.Unlock() } return br, nil }
// sendOne sends a single call via the wrapped sender. If the call is // part of a transaction, the TxnCoordSender adds the transaction to a // map of active transactions and begins heartbeating it. Every // subsequent call for the same transaction updates the lastUpdate // timestamp to prevent live transactions from being considered // abandoned and garbage collected. Read/write mutating requests have // their key or key range added to the transaction's interval tree of // key ranges for eventual cleanup via resolved write intents. // // On success, and if the call is part of a transaction, the affected // key range is recorded as live intents for eventual cleanup upon // transaction commit. Upon successful txn commit, initiates cleanup // of intents. func (tc *TxnCoordSender) sendOne(call proto.Call) { var startNS int64 header := call.Args.Header() // If this call is part of a transaction... if header.Txn != nil { // Set the timestamp to the original timestamp for read-only // commands and to the transaction timestamp for read/write // commands. if proto.IsReadOnly(call.Args) { header.Timestamp = header.Txn.OrigTimestamp } else { header.Timestamp = header.Txn.Timestamp } // EndTransaction must have its key set to that of the txn. if _, ok := call.Args.(*proto.EndTransactionRequest); ok { header.Key = header.Txn.Key // Remember when EndTransaction started in case we want to // be linearizable. startNS = tc.clock.PhysicalNow() } } // Send the command through wrapped sender. tc.wrapped.Send(context.TODO(), call) if header.Txn != nil { // If not already set, copy the request txn. if call.Reply.Header().Txn == nil { call.Reply.Header().Txn = gogoproto.Clone(header.Txn).(*proto.Transaction) } tc.updateResponseTxn(header, call.Reply.Header()) } if txn := call.Reply.Header().Txn; txn != nil { tc.Lock() txnMeta := tc.txns[string(txn.ID)] // If this transactional command leaves transactional intents, add the key // or key range to the intents map. If the transaction metadata doesn't yet // exist, create it. if call.Reply.Header().GoError() == nil { if proto.IsTransactionWrite(call.Args) { if txnMeta == nil { txnMeta = &txnMetadata{ txn: *txn, keys: cache.NewIntervalCache(cache.Config{Policy: cache.CacheNone}), firstUpdateNanos: tc.clock.PhysicalNow(), lastUpdateNanos: tc.clock.PhysicalNow(), timeoutDuration: tc.clientTimeout, txnEnd: make(chan struct{}), } id := string(txn.ID) tc.txns[id] = txnMeta tc.heartbeat(id) } txnMeta.addKeyRange(header.Key, header.EndKey) } // Update our record of this transaction. if txnMeta != nil { txnMeta.txn = *txn txnMeta.setLastUpdate(tc.clock.PhysicalNow()) } } tc.Unlock() } // Cleanup intents and transaction map if end of transaction. switch t := call.Reply.Header().GoError().(type) { case *proto.TransactionStatusError: // Likely already committed or more obscure errors such as epoch or // timestamp regressions; consider it dead. tc.cleanupTxn(t.Txn, nil) case *proto.TransactionAbortedError: // If already aborted, cleanup the txn on this TxnCoordSender. tc.cleanupTxn(t.Txn, nil) case *proto.OpRequiresTxnError: // Run a one-off transaction with that single command. if log.V(1) { log.Infof("%s: auto-wrapping in txn and re-executing", call.Method()) } tmpDB, err := client.Open( fmt.Sprintf("//%s?priority=%d", call.Args.Header().User, call.Args.Header().GetUserPriority()), client.SenderOpt(tc)) if err != nil { log.Warning(err) return } call.Reply.Reset() if err := tmpDB.Txn(func(txn *client.Txn) error { txn.SetDebugName("auto-wrap") b := &client.Batch{} b.InternalAddCall(call) return txn.Commit(b) }); err != nil { log.Warning(err) } case nil: var resolved []proto.Key if txn := call.Reply.Header().Txn; txn != nil { if _, ok := call.Args.(*proto.EndTransactionRequest); ok { // If the --linearizable flag is set, we want to make sure that // all the clocks in the system are past the commit timestamp // of the transaction. This is guaranteed if either // - the commit timestamp is MaxOffset behind startNS // - MaxOffset ns were spent in this function // when returning to the client. Below we choose the option // that involves less waiting, which is likely the first one // unless a transaction commits with an odd timestamp. if tsNS := txn.Timestamp.WallTime; startNS > tsNS { startNS = tsNS } sleepNS := tc.clock.MaxOffset() - time.Duration(tc.clock.PhysicalNow()-startNS) if tc.linearizable && sleepNS > 0 { defer func() { if log.V(1) { log.Infof("%v: waiting %s on EndTransaction for linearizability", txn.Short(), util.TruncateDuration(sleepNS, time.Millisecond)) } time.Sleep(sleepNS) }() } resolved = call.Reply.(*proto.EndTransactionResponse).Resolved if txn.Status != proto.PENDING { tc.cleanupTxn(*txn, resolved) } } } } }
// Send implements the batch.Sender interface. If the request is part of a // transaction, the TxnCoordSender adds the transaction to a map of active // transactions and begins heartbeating it. Every subsequent request for the // same transaction updates the lastUpdate timestamp to prevent live // transactions from being considered abandoned and garbage collected. // Read/write mutating requests have their key or key range added to the // transaction's interval tree of key ranges for eventual cleanup via resolved // write intents; they're tagged to an outgoing EndTransaction request, with // the receiving replica in charge of resolving them. func (tc *TxnCoordSender) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) { // Start new or pick up active trace and embed its trace metadata into // header for use by RPC recipients. From here on, there's always an active // Trace, though its overhead is small unless it's sampled. sp, cleanupSp := tracing.SpanFromContext(opTxnCoordSender, tc.tracer, ctx) defer cleanupSp() // TODO(tschottdorf): To get rid of the spurious alloc below we need to // implement the carrier interface on ba.Header or make Span non-nullable, // both of which force all of ba on the Heap. It's already there, so may // not be a big deal, but ba should live on the stack. Also not easy to use // a buffer pool here since anything that goes into the RPC layer could be // used by goroutines we didn't wait for. if ba.Header.Trace == nil { ba.Header.Trace = &tracing.Span{} } if err := tc.tracer.Inject(sp, basictracer.Delegator, ba.Trace); err != nil { return nil, roachpb.NewError(err) } if err := tc.maybeBeginTxn(&ba); err != nil { return nil, roachpb.NewError(err) } var startNS int64 ba.SetNewRequest() // This is the earliest point at which the request has an ID (if // applicable). Begin a Trace which follows this request. ctx = opentracing.ContextWithSpan(ctx, sp) if ba.Txn != nil { // If this request is part of a transaction... txnID := *ba.Txn.ID // Verify that if this Transaction is not read-only, we have it on // file. If not, refuse writes - the client must have issued a write on // another coordinator previously. if ba.Txn.Writing && ba.IsTransactionWrite() { tc.Lock() _, ok := tc.txns[txnID] tc.Unlock() if !ok { return nil, roachpb.NewErrorf("transaction must not write on multiple coordinators") } } // Set the timestamp to the original timestamp for read-only // commands and to the transaction timestamp for read/write // commands. if ba.IsReadOnly() { ba.Timestamp = ba.Txn.OrigTimestamp } else { ba.Timestamp = ba.Txn.Timestamp } if rArgs, ok := ba.GetArg(roachpb.EndTransaction); ok { et := rArgs.(*roachpb.EndTransactionRequest) if len(et.Key) != 0 { return nil, roachpb.NewErrorf("EndTransaction must not have a Key set") } et.Key = ba.Txn.Key // Remember when EndTransaction started in case we want to // be linearizable. startNS = tc.clock.PhysicalNow() if len(et.IntentSpans) > 0 { // TODO(tschottdorf): it may be useful to allow this later. // That would be part of a possible plan to allow txns which // write on multiple coordinators. return nil, roachpb.NewErrorf("client must not pass intents to EndTransaction") } tc.Lock() txnMeta, metaOK := tc.txns[txnID] if metaOK { et.IntentSpans = txnMeta.intentSpans() } tc.Unlock() if intentSpans := ba.GetIntentSpans(); len(intentSpans) > 0 { // Writes in Batch, so EndTransaction is fine. Should add // outstanding intents to EndTransaction, though. // TODO(tschottdorf): possible issues when the batch fails, // but the intents have been added anyways. // TODO(tschottdorf): some of these intents may be covered // by others, for example {[a,b), a}). This can lead to // some extra requests when those are non-local to the txn // record. But it doesn't seem worth optimizing now. et.IntentSpans = append(et.IntentSpans, intentSpans...) } else if !metaOK { // If we don't have the transaction, then this must be a retry // by the client. We can no longer reconstruct a correct // request so we must fail. // // TODO(bdarnell): if we had a GetTransactionStatus API then // we could lookup the transaction and return either nil or // TransactionAbortedError instead of this ambivalent error. return nil, roachpb.NewErrorf("transaction is already committed or aborted") } if len(et.IntentSpans) == 0 { // If there aren't any intents, then there's factually no // transaction to end. Read-only txns have all of their state in // the client. return nil, roachpb.NewErrorf("cannot commit a read-only transaction") } if log.V(1) { for _, intent := range et.IntentSpans { sp.LogEvent(fmt.Sprintf("intent: [%s,%s)", intent.Key, intent.EndKey)) } } } } // Send the command through wrapped sender, taking appropriate measures // on error. var br *roachpb.BatchResponse { var pErr *roachpb.Error br, pErr = tc.wrapped.Send(ctx, ba) if _, ok := pErr.GetDetail().(*roachpb.OpRequiresTxnError); ok { // TODO(tschottdorf): needs to keep the trace. br, pErr = tc.resendWithTxn(ba) } if pErr = tc.updateState(ctx, ba, br, pErr); pErr != nil { sp.LogEvent(fmt.Sprintf("error: %s", pErr)) return nil, pErr } } if br.Txn == nil { return br, nil } if _, ok := ba.GetArg(roachpb.EndTransaction); !ok { return br, nil } // If the --linearizable flag is set, we want to make sure that // all the clocks in the system are past the commit timestamp // of the transaction. This is guaranteed if either // - the commit timestamp is MaxOffset behind startNS // - MaxOffset ns were spent in this function // when returning to the client. Below we choose the option // that involves less waiting, which is likely the first one // unless a transaction commits with an odd timestamp. if tsNS := br.Txn.Timestamp.WallTime; startNS > tsNS { startNS = tsNS } sleepNS := tc.clock.MaxOffset() - time.Duration(tc.clock.PhysicalNow()-startNS) if tc.linearizable && sleepNS > 0 { defer func() { if log.V(1) { log.Infof("%v: waiting %s on EndTransaction for linearizability", br.Txn.Short(), util.TruncateDuration(sleepNS, time.Millisecond)) } time.Sleep(sleepNS) }() } if br.Txn.Status != roachpb.PENDING { tc.cleanupTxn(sp, *br.Txn) } return br, nil }