// TestSigCacheAddMaxEntriesZeroOrNegative tests that if a sigCache is created // with a max size <= 0, then no entries are added to the sigcache at all. func TestSigCacheAddMaxEntriesZeroOrNegative(t *testing.T) { // Create a sigcache that can hold up to 0 entries. sigCache := NewSigCache(0) // Generate a random sigCache entry triplet. msg1, sig1, key1, err := genRandomSig() if err != nil { t.Errorf("unable to generate random signature test data") } // Add the triplet to the signature cache. sigCache.Add(*msg1, sig1, key1) // The generated triplet should not be found. sig1Copy, _ := btcec.ParseSignature(sig1.Serialize(), btcec.S256()) key1Copy, _ := btcec.ParsePubKey(key1.SerializeCompressed(), btcec.S256()) if sigCache.Exists(*msg1, sig1Copy, key1Copy) { t.Errorf("previously added signature found in sigcache, but" + "shouldn't have been") } // There shouldn't be any entries in the sigCache. if len(sigCache.validSigs) != 0 { t.Errorf("%v items found in sigcache, no items should have"+ "been added", len(sigCache.validSigs)) } }
func TestEncodeDecodeWIF(t *testing.T) { priv1, _ := btcec.PrivKeyFromBytes(btcec.S256(), []byte{ 0x0c, 0x28, 0xfc, 0xa3, 0x86, 0xc7, 0xa2, 0x27, 0x60, 0x0b, 0x2f, 0xe5, 0x0b, 0x7c, 0xae, 0x11, 0xec, 0x86, 0xd3, 0xbf, 0x1f, 0xbe, 0x47, 0x1b, 0xe8, 0x98, 0x27, 0xe1, 0x9d, 0x72, 0xaa, 0x1d}) priv2, _ := btcec.PrivKeyFromBytes(btcec.S256(), []byte{ 0xdd, 0xa3, 0x5a, 0x14, 0x88, 0xfb, 0x97, 0xb6, 0xeb, 0x3f, 0xe6, 0xe9, 0xef, 0x2a, 0x25, 0x81, 0x4e, 0x39, 0x6f, 0xb5, 0xdc, 0x29, 0x5f, 0xe9, 0x94, 0xb9, 0x67, 0x89, 0xb2, 0x1a, 0x03, 0x98}) wif1, err := NewWIF(priv1, &chaincfg.MainNetParams, false) if err != nil { t.Fatal(err) } wif2, err := NewWIF(priv2, &chaincfg.TestNet3Params, true) if err != nil { t.Fatal(err) } tests := []struct { wif *WIF encoded string }{ { wif1, "5HueCGU8rMjxEXxiPuD5BDku4MkFqeZyd4dZ1jvhTVqvbTLvyTJ", }, { wif2, "cV1Y7ARUr9Yx7BR55nTdnR7ZXNJphZtCCMBTEZBJe1hXt2kB684q", }, } for _, test := range tests { // Test that encoding the WIF structure matches the expected string. s := test.wif.String() if s != test.encoded { t.Errorf("TestEncodeDecodePrivateKey failed: want '%s', got '%s'", test.encoded, s) continue } // Test that decoding the expected string results in the original WIF // structure. w, err := DecodeWIF(test.encoded) if err != nil { t.Error(err) continue } if got := w.String(); got != test.encoded { t.Errorf("NewWIF failed: want '%v', got '%v'", test.wif, got) } } }
// NewKeyFromString returns a new extended key instance from a base58-encoded // extended key. func NewKeyFromString(key string) (*ExtendedKey, error) { // The base58-decoded extended key must consist of a serialized payload // plus an additional 4 bytes for the checksum. decoded := base58.Decode(key) if len(decoded) != serializedKeyLen+4 { return nil, ErrInvalidKeyLen } // The serialized format is: // version (4) || depth (1) || parent fingerprint (4)) || // child num (4) || chain code (32) || key data (33) || checksum (4) // Split the payload and checksum up and ensure the checksum matches. payload := decoded[:len(decoded)-4] checkSum := decoded[len(decoded)-4:] expectedCheckSum := wire.DoubleSha256(payload)[:4] if !bytes.Equal(checkSum, expectedCheckSum) { return nil, ErrBadChecksum } // Deserialize each of the payload fields. version := payload[:4] depth := uint16(payload[4:5][0]) parentFP := payload[5:9] childNum := binary.BigEndian.Uint32(payload[9:13]) chainCode := payload[13:45] keyData := payload[45:78] // The key data is a private key if it starts with 0x00. Serialized // compressed pubkeys either start with 0x02 or 0x03. isPrivate := keyData[0] == 0x00 if isPrivate { // Ensure the private key is valid. It must be within the range // of the order of the secp256k1 curve and not be 0. keyData = keyData[1:] keyNum := new(big.Int).SetBytes(keyData) if keyNum.Cmp(btcec.S256().N) >= 0 || keyNum.Sign() == 0 { return nil, ErrUnusableSeed } } else { // Ensure the public key parses correctly and is actually on the // secp256k1 curve. _, err := btcec.ParsePubKey(keyData, btcec.S256()) if err != nil { return nil, err } } return newExtendedKey(version, keyData, chainCode, parentFP, depth, childNum, isPrivate), nil }
// TestSigCacheAddEvictEntry tests the eviction case where a new signature // triplet is added to a full signature cache which should trigger randomized // eviction, followed by adding the new element to the cache. func TestSigCacheAddEvictEntry(t *testing.T) { // Create a sigcache that can hold up to 100 entries. sigCacheSize := uint(100) sigCache := NewSigCache(sigCacheSize) // Fill the sigcache up with some random sig triplets. for i := uint(0); i < sigCacheSize; i++ { msg, sig, key, err := genRandomSig() if err != nil { t.Fatalf("unable to generate random signature test data") } sigCache.Add(*msg, sig, key) sigCopy, _ := btcec.ParseSignature(sig.Serialize(), btcec.S256()) keyCopy, _ := btcec.ParsePubKey(key.SerializeCompressed(), btcec.S256()) if !sigCache.Exists(*msg, sigCopy, keyCopy) { t.Errorf("previously added item not found in signature" + "cache") } } // The sigcache should now have sigCacheSize entries within it. if uint(len(sigCache.validSigs)) != sigCacheSize { t.Fatalf("sigcache should now have %v entries, instead it has %v", sigCacheSize, len(sigCache.validSigs)) } // Add a new entry, this should cause eviction of a randomly chosen // previous entry. msgNew, sigNew, keyNew, err := genRandomSig() if err != nil { t.Fatalf("unable to generate random signature test data") } sigCache.Add(*msgNew, sigNew, keyNew) // The sigcache should still have sigCache entries. if uint(len(sigCache.validSigs)) != sigCacheSize { t.Fatalf("sigcache should now have %v entries, instead it has %v", sigCacheSize, len(sigCache.validSigs)) } // The entry added above should be found within the sigcache. sigNewCopy, _ := btcec.ParseSignature(sigNew.Serialize(), btcec.S256()) keyNewCopy, _ := btcec.ParsePubKey(keyNew.SerializeCompressed(), btcec.S256()) if !sigCache.Exists(*msgNew, sigNewCopy, keyNewCopy) { t.Fatalf("previously added item not found in signature cache") } }
func TestScalarMult(t *testing.T) { // Strategy for this test: // Get a random exponent from the generator point at first // This creates a new point which is used in the next iteration // Use another random exponent on the new point. // We use BaseMult to verify by multiplying the previous exponent // and the new random exponent together (mod N) s256 := btcec.S256() x, y := s256.Gx, s256.Gy exponent := big.NewInt(1) for i := 0; i < 1024; i++ { data := make([]byte, 32) _, err := rand.Read(data) if err != nil { t.Fatalf("failed to read random data at %d", i) break } x, y = s256.ScalarMult(x, y, data) exponent.Mul(exponent, new(big.Int).SetBytes(data)) xWant, yWant := s256.ScalarBaseMult(exponent.Bytes()) if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 { t.Fatalf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant) break } } }
// NewMaster creates a new master node for use in creating a hierarchical // deterministic key chain. The seed must be between 128 and 512 bits and // should be generated by a cryptographically secure random generation source. // // NOTE: There is an extremely small chance (< 1 in 2^127) the provided seed // will derive to an unusable secret key. The ErrUnusable error will be // returned if this should occur, so the caller must check for it and generate a // new seed accordingly. func NewMaster(seed []byte, net *chaincfg.Params) (*ExtendedKey, error) { // Per [BIP32], the seed must be in range [MinSeedBytes, MaxSeedBytes]. if len(seed) < MinSeedBytes || len(seed) > MaxSeedBytes { return nil, ErrInvalidSeedLen } // First take the HMAC-SHA512 of the master key and the seed data: // I = HMAC-SHA512(Key = "Bitcoin seed", Data = S) hmac512 := hmac.New(sha512.New, masterKey) hmac512.Write(seed) lr := hmac512.Sum(nil) // Split "I" into two 32-byte sequences Il and Ir where: // Il = master secret key // Ir = master chain code secretKey := lr[:len(lr)/2] chainCode := lr[len(lr)/2:] // Ensure the key in usable. secretKeyNum := new(big.Int).SetBytes(secretKey) if secretKeyNum.Cmp(btcec.S256().N) >= 0 || secretKeyNum.Sign() == 0 { return nil, ErrUnusableSeed } parentFP := []byte{0x00, 0x00, 0x00, 0x00} return newExtendedKey(net.HDPrivateKeyID[:], secretKey, chainCode, parentFP, 0, 0, true), nil }
// PrivKey returns the private key for the address. It can fail if the address // manager is watching-only or locked, or the address does not have any keys. // // This is part of the ManagedPubKeyAddress interface implementation. func (a *managedAddress) PrivKey() (*btcec.PrivateKey, error) { // No private keys are available for a watching-only address manager. if a.manager.watchingOnly { return nil, managerError(ErrWatchingOnly, errWatchingOnly, nil) } a.manager.mtx.Lock() defer a.manager.mtx.Unlock() // Account manager must be unlocked to decrypt the private key. if a.manager.locked { return nil, managerError(ErrLocked, errLocked, nil) } // Decrypt the key as needed. Also, make sure it's a copy since the // private key stored in memory can be cleared at any time. Otherwise // the returned private key could be invalidated from under the caller. privKeyCopy, err := a.unlock(a.manager.cryptoKeyPriv) if err != nil { return nil, err } privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), privKeyCopy) zero.Bytes(privKeyCopy) return privKey, nil }
// This example demonstrates signing a message with a secp256k1 private key that // is first parsed form raw bytes and serializing the generated signature. func Example_signMessage() { // Decode a hex-encoded private key. pkBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2d4f87" + "20ee63e502ee2869afab7de234b80c") if err != nil { fmt.Println(err) return } privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes) // Sign a message using the private key. message := "test message" messageHash := wire.DoubleSha256([]byte(message)) signature, err := privKey.Sign(messageHash) if err != nil { fmt.Println(err) return } // Serialize and display the signature. fmt.Printf("Serialized Signature: %x\n", signature.Serialize()) // Verify the signature for the message using the public key. verified := signature.Verify(messageHash, pubKey) fmt.Printf("Signature Verified? %v\n", verified) // Output: // Serialized Signature: 304402201008e236fa8cd0f25df4482dddbb622e8a8b26ef0ba731719458de3ccd93805b022032f8ebe514ba5f672466eba334639282616bb3c2f0ab09998037513d1f9e3d6d // Signature Verified? true }
// This example demonstrates decrypting a message using a private key that is // first parsed from raw bytes. func Example_decryptMessage() { // Decode the hex-encoded private key. pkBytes, err := hex.DecodeString("a11b0a4e1a132305652ee7a8eb7848f6ad" + "5ea381e3ce20a2c086a2e388230811") if err != nil { fmt.Println(err) return } privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes) ciphertext, err := hex.DecodeString("35f644fbfb208bc71e57684c3c8b437402ca" + "002047a2f1b38aa1a8f1d5121778378414f708fe13ebf7b4a7bb74407288c1958969" + "00207cf4ac6057406e40f79961c973309a892732ae7a74ee96cd89823913b8b8d650" + "a44166dc61ea1c419d47077b748a9c06b8d57af72deb2819d98a9d503efc59fc8307" + "d14174f8b83354fac3ff56075162") // Try decrypting the message. plaintext, err := btcec.Decrypt(privKey, ciphertext) if err != nil { fmt.Println(err) return } fmt.Println(string(plaintext)) // Output: // test message }
func TestPubKeys(t *testing.T) { for _, test := range pubKeyTests { pk, err := btcec.ParsePubKey(test.key, btcec.S256()) if err != nil { if test.isValid { t.Errorf("%s pubkey failed when shouldn't %v", test.name, err) } continue } if !test.isValid { t.Errorf("%s counted as valid when it should fail", test.name) continue } var pkStr []byte switch test.format { case btcec.TstPubkeyUncompressed: pkStr = (*btcec.PublicKey)(pk).SerializeUncompressed() case btcec.TstPubkeyCompressed: pkStr = (*btcec.PublicKey)(pk).SerializeCompressed() case btcec.TstPubkeyHybrid: pkStr = (*btcec.PublicKey)(pk).SerializeHybrid() } if !bytes.Equal(test.key, pkStr) { t.Errorf("%s pubkey: serialized keys do not match.", test.name) spew.Dump(test.key) spew.Dump(pkStr) } } }
// pubKeyBytes returns bytes for the serialized compressed public key associated // with this extended key in an efficient manner including memoization as // necessary. // // When the extended key is already a public key, the key is simply returned as // is since it's already in the correct form. However, when the extended key is // a private key, the public key will be calculated and memoized so future // accesses can simply return the cached result. func (k *ExtendedKey) pubKeyBytes() []byte { // Just return the key if it's already an extended public key. if !k.isPrivate { return k.key } // This is a private extended key, so calculate and memoize the public // key if needed. if len(k.pubKey) == 0 { pkx, pky := btcec.S256().ScalarBaseMult(k.key) pubKey := btcec.PublicKey{Curve: btcec.S256(), X: pkx, Y: pky} k.pubKey = pubKey.SerializeCompressed() } return k.pubKey }
// ECPrivKey converts the extended key to a btcec private key and returns it. // As you might imagine this is only possible if the extended key is a private // extended key (as determined by the IsPrivate function). The ErrNotPrivExtKey // error will be returned if this function is called on a public extended key. func (k *ExtendedKey) ECPrivKey() (*btcec.PrivateKey, error) { if !k.isPrivate { return nil, ErrNotPrivExtKey } privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), k.key) return privKey, nil }
func TestPrivKeys(t *testing.T) { tests := []struct { name string key []byte }{ { name: "check curve", key: []byte{ 0xea, 0xf0, 0x2c, 0xa3, 0x48, 0xc5, 0x24, 0xe6, 0x39, 0x26, 0x55, 0xba, 0x4d, 0x29, 0x60, 0x3c, 0xd1, 0xa7, 0x34, 0x7d, 0x9d, 0x65, 0xcf, 0xe9, 0x3c, 0xe1, 0xeb, 0xff, 0xdc, 0xa2, 0x26, 0x94, }, }, } for _, test := range tests { priv, pub := btcec.PrivKeyFromBytes(btcec.S256(), test.key) _, err := btcec.ParsePubKey( pub.SerializeUncompressed(), btcec.S256()) if err != nil { t.Errorf("%s privkey: %v", test.name, err) continue } hash := []byte{0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9} sig, err := priv.Sign(hash) if err != nil { t.Errorf("%s could not sign: %v", test.name, err) continue } if !sig.Verify(hash, pub) { t.Errorf("%s could not verify: %v", test.name, err) continue } serializedKey := priv.Serialize() if !bytes.Equal(serializedKey, test.key) { t.Errorf("%s unexpected serialized bytes - got: %x, "+ "want: %x", test.name, serializedKey, test.key) } } }
// This example demonstrates encrypting a message for a public key that is first // parsed from raw bytes, then decrypting it using the corresponding private key. func Example_encryptMessage() { // Decode the hex-encoded pubkey of the recipient. pubKeyBytes, err := hex.DecodeString("04115c42e757b2efb7671c578530ec191a1" + "359381e6a71127a9d37c486fd30dae57e76dc58f693bd7e7010358ce6b165e483a29" + "21010db67ac11b1b51b651953d2") // uncompressed pubkey if err != nil { fmt.Println(err) return } pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256()) if err != nil { fmt.Println(err) return } // Encrypt a message decryptable by the private key corresponding to pubKey message := "test message" ciphertext, err := btcec.Encrypt(pubKey, []byte(message)) if err != nil { fmt.Println(err) return } // Decode the hex-encoded private key. pkBytes, err := hex.DecodeString("a11b0a4e1a132305652ee7a8eb7848f6ad" + "5ea381e3ce20a2c086a2e388230811") if err != nil { fmt.Println(err) return } // note that we already have corresponding pubKey privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes) // Try decrypting and verify if it's the same message. plaintext, err := btcec.Decrypt(privKey, ciphertext) if err != nil { fmt.Println(err) return } fmt.Println(string(plaintext)) // Output: // test message }
// TestSigCacheAddExists tests the ability to add, and later check the // existence of a signature triplet in the signature cache. func TestSigCacheAddExists(t *testing.T) { sigCache := NewSigCache(200) // Generate a random sigCache entry triplet. msg1, sig1, key1, err := genRandomSig() if err != nil { t.Errorf("unable to generate random signature test data") } // Add the triplet to the signature cache. sigCache.Add(*msg1, sig1, key1) // The previously added triplet should now be found within the sigcache. sig1Copy, _ := btcec.ParseSignature(sig1.Serialize(), btcec.S256()) key1Copy, _ := btcec.ParsePubKey(key1.SerializeCompressed(), btcec.S256()) if !sigCache.Exists(*msg1, sig1Copy, key1Copy) { t.Errorf("previously added item not found in signature cache") } }
// TstAddressPubKey makes an AddressPubKey, setting the unexported fields with // the parameters. func TstAddressPubKey(serializedPubKey []byte, pubKeyFormat PubKeyFormat, netID byte) *AddressPubKey { pubKey, _ := btcec.ParsePubKey(serializedPubKey, btcec.S256()) return &AddressPubKey{ pubKeyFormat: pubKeyFormat, pubKey: (*btcec.PublicKey)(pubKey), pubKeyHashID: netID, } }
func TestGenerateSharedSecret(t *testing.T) { privKey1, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("private key generation error: %s", err) return } privKey2, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("private key generation error: %s", err) return } secret1 := btcec.GenerateSharedSecret(privKey1, privKey2.PubKey()) secret2 := btcec.GenerateSharedSecret(privKey2, privKey1.PubKey()) if !bytes.Equal(secret1, secret2) { t.Errorf("ECDH failed, secrets mismatch - first: %x, second: %x", secret1, secret2) } }
func main() { fi, err := os.Create("secp256k1.go") if err != nil { log.Fatal(err) } defer fi.Close() // Compress the serialized byte points. serialized := btcec.S256().SerializedBytePoints() var compressed bytes.Buffer w := zlib.NewWriter(&compressed) if _, err := w.Write(serialized); err != nil { fmt.Println(err) os.Exit(1) } w.Close() // Encode the compressed byte points with base64. encoded := make([]byte, base64.StdEncoding.EncodedLen(compressed.Len())) base64.StdEncoding.Encode(encoded, compressed.Bytes()) fmt.Fprintln(fi, "// Copyright (c) 2015 The btcsuite developers") fmt.Fprintln(fi, "// Use of this source code is governed by an ISC") fmt.Fprintln(fi, "// license that can be found in the LICENSE file.") fmt.Fprintln(fi) fmt.Fprintln(fi, "package btcec") fmt.Fprintln(fi) fmt.Fprintln(fi, "// Auto-generated file (see genprecomps.go)") fmt.Fprintln(fi, "// DO NOT EDIT") fmt.Fprintln(fi) fmt.Fprintf(fi, "var secp256k1BytePoints = %q\n", string(encoded)) a1, b1, a2, b2 := btcec.S256().EndomorphismVectors() fmt.Println("The following values are the computed linearly " + "independent vectors needed to make use of the secp256k1 " + "endomorphism:") fmt.Printf("a1: %x\n", a1) fmt.Printf("b1: %x\n", b1) fmt.Printf("a2: %x\n", a2) fmt.Printf("b2: %x\n", b2) }
func TestSignCompact(t *testing.T) { for i := 0; i < 256; i++ { name := fmt.Sprintf("test %d", i) data := make([]byte, 32) _, err := rand.Read(data) if err != nil { t.Errorf("failed to read random data for %s", name) continue } compressed := i%2 != 0 testSignCompact(t, name, btcec.S256(), data, compressed) } }
// This example demonstrates verifying a secp256k1 signature against a public // key that is first parsed from raw bytes. The signature is also parsed from // raw bytes. func Example_verifySignature() { // Decode hex-encoded serialized public key. pubKeyBytes, err := hex.DecodeString("02a673638cb9587cb68ea08dbef685c" + "6f2d2a751a8b3c6f2a7e9a4999e6e4bfaf5") if err != nil { fmt.Println(err) return } pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256()) if err != nil { fmt.Println(err) return } // Decode hex-encoded serialized signature. sigBytes, err := hex.DecodeString("30450220090ebfb3690a0ff115bb1b38b" + "8b323a667b7653454f1bccb06d4bbdca42c2079022100ec95778b51e707" + "1cb1205f8bde9af6592fc978b0452dafe599481c46d6b2e479") if err != nil { fmt.Println(err) return } signature, err := btcec.ParseSignature(sigBytes, btcec.S256()) if err != nil { fmt.Println(err) return } // Verify the signature for the message using the public key. message := "test message" messageHash := wire.DoubleSha256([]byte(message)) verified := signature.Verify(messageHash, pubKey) fmt.Println("Signature Verified?", verified) // Output: // Signature Verified? true }
func TestSignatures(t *testing.T) { for _, test := range signatureTests { var err error if test.der { _, err = btcec.ParseDERSignature(test.sig, btcec.S256()) } else { _, err = btcec.ParseSignature(test.sig, btcec.S256()) } if err != nil { if test.isValid { t.Errorf("%s signature failed when shouldn't %v", test.name, err) } /* else { t.Errorf("%s got error %v", test.name, err) } */ continue } if !test.isValid { t.Errorf("%s counted as valid when it should fail", test.name) } } }
//TODO: test different curves as well? func TestBaseMult(t *testing.T) { s256 := btcec.S256() for i, e := range s256BaseMultTests { k, ok := new(big.Int).SetString(e.k, 16) if !ok { t.Errorf("%d: bad value for k: %s", i, e.k) } x, y := s256.ScalarBaseMult(k.Bytes()) if fmt.Sprintf("%X", x) != e.x || fmt.Sprintf("%X", y) != e.y { t.Errorf("%d: bad output for k=%s: got (%X, %X), want (%s, %s)", i, e.k, x, y, e.x, e.y) } if testing.Short() && i > 5 { break } } }
// genRandomSig returns a random message, a signature of the message under the // public key and the public key. This function is used to generate randomized // test data. func genRandomSig() (*wire.ShaHash, *btcec.Signature, *btcec.PublicKey, error) { privKey, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { return nil, nil, nil, err } var msgHash wire.ShaHash if _, err := rand.Read(msgHash[:]); err != nil { return nil, nil, nil, err } sig, err := privKey.Sign(msgHash[:]) if err != nil { return nil, nil, nil, err } return &msgHash, sig, privKey.PubKey(), nil }
func TestBaseMultVerify(t *testing.T) { s256 := btcec.S256() for bytes := 1; bytes < 40; bytes++ { for i := 0; i < 30; i++ { data := make([]byte, bytes) _, err := rand.Read(data) if err != nil { t.Errorf("failed to read random data for %d", i) continue } x, y := s256.ScalarBaseMult(data) xWant, yWant := s256.ScalarMult(s256.Gx, s256.Gy, data) if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 { t.Errorf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant) } if testing.Short() && i > 2 { break } } } }
// Test 2: Byte compatibility with Pyelliptic func TestCiphering(t *testing.T) { pb, _ := hex.DecodeString("fe38240982f313ae5afb3e904fb8215fb11af1200592b" + "fca26c96c4738e4bf8f") privkey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pb) in := []byte("This is just a test.") out, _ := hex.DecodeString("b0d66e5adaa5ed4e2f0ca68e17b8f2fc02ca002009e3" + "3487e7fa4ab505cf34d98f131be7bd258391588ca7804acb30251e71a04e0020ecf" + "df0f84608f8add82d7353af780fbb28868c713b7813eb4d4e61f7b75d7534dd9856" + "9b0ba77cf14348fcff80fee10e11981f1b4be372d93923e9178972f69937ec850ed" + "6c3f11ff572ddd5b2bedf9f9c0b327c54da02a28fcdce1f8369ffec") dec, err := btcec.Decrypt(privkey, out) if err != nil { t.Fatal("failed to decrypt:", err) } if !bytes.Equal(in, dec) { t.Error("decrypted data doesn't match original") } }
// Test 1: Encryption and decryption func TestCipheringBasic(t *testing.T) { privkey, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Fatal("failed to generate private key") } in := []byte("Hey there dude. How are you doing? This is a test.") out, err := btcec.Encrypt(privkey.PubKey(), in) if err != nil { t.Fatal("failed to encrypt:", err) } dec, err := btcec.Decrypt(privkey, out) if err != nil { t.Fatal("failed to decrypt:", err) } if !bytes.Equal(in, dec) { t.Error("decrypted data doesn't match original") } }
// DecodeWIF creates a new WIF structure by decoding the string encoding of // the import format. // // The WIF string must be a base58-encoded string of the following byte // sequence: // // * 1 byte to identify the network, must be 0x80 for mainnet or 0xef for // either testnet3 or the regression test network // * 32 bytes of a binary-encoded, big-endian, zero-padded private key // * Optional 1 byte (equal to 0x01) if the address being imported or exported // was created by taking the RIPEMD160 after SHA256 hash of a serialized // compressed (33-byte) public key // * 4 bytes of checksum, must equal the first four bytes of the double SHA256 // of every byte before the checksum in this sequence // // If the base58-decoded byte sequence does not match this, DecodeWIF will // return a non-nil error. ErrMalformedPrivateKey is returned when the WIF // is of an impossible length or the expected compressed pubkey magic number // does not equal the expected value of 0x01. ErrChecksumMismatch is returned // if the expected WIF checksum does not match the calculated checksum. func DecodeWIF(wif string) (*WIF, error) { decoded := base58.Decode(wif) decodedLen := len(decoded) var compress bool // Length of base58 decoded WIF must be 32 bytes + an optional 1 byte // (0x01) if compressed, plus 1 byte for netID + 4 bytes of checksum. switch decodedLen { case 1 + btcec.PrivKeyBytesLen + 1 + 4: if decoded[33] != compressMagic { return nil, ErrMalformedPrivateKey } compress = true case 1 + btcec.PrivKeyBytesLen + 4: compress = false default: return nil, ErrMalformedPrivateKey } // Checksum is first four bytes of double SHA256 of the identifier byte // and privKey. Verify this matches the final 4 bytes of the decoded // private key. var tosum []byte if compress { tosum = decoded[:1+btcec.PrivKeyBytesLen+1] } else { tosum = decoded[:1+btcec.PrivKeyBytesLen] } cksum := wire.DoubleSha256(tosum)[:4] if !bytes.Equal(cksum, decoded[decodedLen-4:]) { return nil, ErrChecksumMismatch } netID := decoded[0] privKeyBytes := decoded[1 : 1+btcec.PrivKeyBytesLen] privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), privKeyBytes) return &WIF{privKey, compress, netID}, nil }
func TestVectors(t *testing.T) { sha := sha1.New() for i, test := range testVectors { pub := btcec.PublicKey{ Curve: btcec.S256(), X: fromHex(test.Qx), Y: fromHex(test.Qy), } msg, _ := hex.DecodeString(test.msg) sha.Reset() sha.Write(msg) hashed := sha.Sum(nil) sig := btcec.Signature{R: fromHex(test.r), S: fromHex(test.s)} if f**k := sig.Verify(hashed, &pub); f**k != test.ok { //t.Errorf("%d: bad result %v %v", i, pub, hashed) t.Errorf("%d: bad result %v instead of %v", i, f**k, test.ok) } if testing.Short() { break } } }
// NewAddressPubKey returns a new AddressPubKey which represents a pay-to-pubkey // address. The serializedPubKey parameter must be a valid pubkey and can be // uncompressed, compressed, or hybrid. func NewAddressPubKey(serializedPubKey []byte, net *chaincfg.Params) (*AddressPubKey, error) { pubKey, err := btcec.ParsePubKey(serializedPubKey, btcec.S256()) if err != nil { return nil, err } // Set the format of the pubkey. This probably should be returned // from btcec, but do it here to avoid API churn. We already know the // pubkey is valid since it parsed above, so it's safe to simply examine // the leading byte to get the format. pkFormat := PKFUncompressed switch serializedPubKey[0] { case 0x02, 0x03: pkFormat = PKFCompressed case 0x06, 0x07: pkFormat = PKFHybrid } return &AddressPubKey{ pubKeyFormat: pkFormat, pubKey: pubKey, pubKeyHashID: net.PubKeyHashAddrID, }, nil }
func TestSignAndVerify(t *testing.T) { testSignAndVerify(t, btcec.S256(), "S256") }