func (this *builder) fastCount(node *algebra.Subselect) (bool, error) { if node.From() == nil || node.Where() != nil || node.Group() != nil { return false, nil } from, ok := node.From().(*algebra.KeyspaceTerm) if !ok || from.Projection() != nil || from.Keys() != nil { return false, nil } from.SetDefaultNamespace(this.namespace) keyspace, err := this.getTermKeyspace(from) if err != nil { return false, err } for _, term := range node.Projection().Terms() { count, ok := term.Expression().(*algebra.Count) if !ok || count.Operand() != nil { return false, nil } } scan := plan.NewCountScan(keyspace, from) this.children = append(this.children, scan) return true, nil }
func allAggregates(node *algebra.Subselect, order *algebra.Order) (map[string]algebra.Aggregate, error) { aggs := make(map[string]algebra.Aggregate) if node.Let() != nil { for _, binding := range node.Let() { collectAggregates(aggs, binding.Expression()) if len(aggs) > 0 { return nil, fmt.Errorf("Aggregates not allowed in LET.") } } } if node.Where() != nil { collectAggregates(aggs, node.Where()) if len(aggs) > 0 { return nil, fmt.Errorf("Aggregates not allowed in WHERE.") } } group := node.Group() if group != nil { letting := group.Letting() for _, binding := range letting { collectAggregates(aggs, binding.Expression()) } having := group.Having() if having != nil { collectAggregates(aggs, having) } } projection := node.Projection() if projection != nil { for _, term := range projection.Terms() { if term.Expression() != nil { collectAggregates(aggs, term.Expression()) } } } if order != nil { allow := len(aggs) > 0 for _, term := range order.Terms() { if term.Expression() != nil { collectAggregates(aggs, term.Expression()) } } if !allow && len(aggs) > 0 { return nil, fmt.Errorf("Aggregates not available for this ORDER BY.") } } return aggs, nil }
func (this *builder) VisitSubselect(node *algebra.Subselect) (interface{}, error) { prevCover := this.cover prevCorrelated := this.correlated defer func() { this.cover = prevCover this.correlated = prevCorrelated }() this.correlated = node.IsCorrelated() if this.cover == nil { this.cover = node } aggs, err := allAggregates(node, this.order) if err != nil { return nil, err } this.where = node.Where() group := node.Group() if group == nil && len(aggs) > 0 { group = algebra.NewGroup(nil, nil, nil) this.where = constrainAggregate(this.where, aggs) } this.children = make([]plan.Operator, 0, 16) // top-level children, executed sequentially this.subChildren = make([]plan.Operator, 0, 16) // sub-children, executed across data-parallel streams err = this.visitFrom(node, group) if err != nil { return nil, err } if this.coveringScan != nil { coverer := expression.NewCoverer(this.coveringScan.Covers()) err = this.cover.MapExpressions(coverer) if err != nil { return nil, err } if this.where != nil { this.where, err = coverer.Map(this.where) if err != nil { return nil, err } } } if node.Let() != nil { this.subChildren = append(this.subChildren, plan.NewLet(node.Let())) } if node.Where() != nil { this.subChildren = append(this.subChildren, plan.NewFilter(node.Where())) } if group != nil { this.visitGroup(group, aggs) } projection := node.Projection() this.subChildren = append(this.subChildren, plan.NewInitialProject(projection)) // Initial DISTINCT (parallel) if projection.Distinct() || this.distinct { this.subChildren = append(this.subChildren, plan.NewDistinct()) } if !this.delayProjection { // Perform the final projection if there is no subsequent ORDER BY this.subChildren = append(this.subChildren, plan.NewFinalProject()) } // Parallelize the subChildren this.children = append(this.children, plan.NewParallel(plan.NewSequence(this.subChildren...), this.maxParallelism)) // Final DISTINCT (serial) if projection.Distinct() || this.distinct { this.children = append(this.children, plan.NewDistinct()) } // Serialize the top-level children return plan.NewSequence(this.children...), nil }