// Start initialises 'global' and starts logging func Start(simfilepath string, erasefiles, verbose bool) (startisok bool) { // multiprocessing data Global.Rank = 0 Global.Nproc = 1 Global.Root = true Global.Distr = false if mpi.IsOn() { Global.Rank = mpi.Rank() Global.Nproc = mpi.Size() Global.Root = Global.Rank == 0 Global.Distr = Global.Nproc > 1 } Global.Verbose = verbose if !Global.Root { Global.Verbose = false } Global.WspcStop = make([]int, Global.Nproc) Global.WspcInum = make([]int, Global.Nproc) // simulation and convenience variables dir := filepath.Dir(simfilepath) fn := filepath.Base(simfilepath) Global.Sim = inp.ReadSim(dir, fn, Global.LogPrefix, erasefiles) LogErrCond(Global.Sim == nil, "ReadSim failed\n") if Stop() { return } Global.Ndim = Global.Sim.Ndim Global.Dirout = Global.Sim.Data.DirOut Global.Fnkey = Global.Sim.Data.FnameKey Global.Enc = Global.Sim.Data.Encoder Global.Stat = Global.Sim.Data.Stat Global.LogBcs = Global.Sim.Data.LogBcs Global.Debug = Global.Sim.Data.Debug // fix show residual flag if !Global.Root { Global.Sim.Data.ShowR = false } // auxiliar structures Global.DynCoefs = new(DynCoefs) if !Global.DynCoefs.Init(&Global.Sim.Solver) { return } Global.HydroSt = new(HydroStatic) Global.HydroSt.Init() // success return true }
func main() { // input data simfile := "simfile.sim" zmin := 0.0 zmax := 3.0 npts := 11 // parse flags flag.Parse() if len(flag.Args()) > 0 { simfile = flag.Arg(0) } if len(flag.Args()) > 1 { zmin = io.Atof(flag.Arg(1)) } if len(flag.Args()) > 2 { zmax = io.Atob(flag.Arg(2)) } if len(flag.Args()) > 3 { npts = io.Atoi(flag.Arg(3)) } // print input data io.Pf("\nInput data\n") io.Pf("==========\n") io.Pf(" simfile = %30s // simulation filename\n", simfile) io.Pf(" zmin = %30s // min elevation\n", zmin) io.Pf(" zmax = %30v // max elevation\n", zmax) io.Pf(" npts = %30v // number of points\n", npts) io.Pf("\n") // sim file sim := inp.ReadSim("", simfile, false) if sim == nil { io.PfRed("cannot read sim file\n") return } // layer var lay fem.GeoLayer lay.Zmin = zmin lay.Zmax = zmax lay.Cl = sim.WaterRho0 / sim.WaterBulk //if !lay.ReadPorousParameters(sim.Regions[0], // TODO }
func main() { // catch errors defer func() { if err := recover(); err != nil { io.PfRed("ERROR: %v\n", err) } }() // input data simfile, _ := io.ArgToFilename(0, "simfile.sim", true) zmin := io.ArgToFloat(1, 0.0) zmax := io.ArgToFloat(2, 3.0) npts := io.ArgToInt(3, 11) io.Pf("\n%s\n", io.ArgsTable( "simulation filename", "simfile", simfile, "min elevation", "zmin", zmin, "max elevation", "zmax", zmax, "number of points", "npts", npts, )) // sim file sim := inp.ReadSim("", simfile, false) if sim == nil { io.PfRed("cannot read sim file\n") return } // layer var lay fem.GeoLayer lay.Zmin = zmin lay.Zmax = zmax lay.Cl = sim.WaterRho0 / sim.WaterBulk //if !lay.ReadPorousParameters(sim.Regions[0], // TODO }
func main() { // input data file inpfn := "data/loccmdrv1.inp" flag.Parse() if len(flag.Args()) > 0 { inpfn = flag.Arg(0) } if io.FnExt(inpfn) == "" { inpfn += ".inp" } // read and parse input data var in Input b, err := io.ReadFile(inpfn) if err != nil { io.PfRed("cannot read %s\n", inpfn) return } err = json.Unmarshal(b, &in) if err != nil { io.PfRed("cannot parse %s\n", inpfn) return } in.PostProcess() // print input data io.Pf("%v\n", in) // load simulation sim := inp.ReadSim(in.Dir, in.SimFn, "cmd_", false) if sim == nil { io.PfRed("cannot load simulation\n") return } // get material data mat := sim.Mdb.Get(in.MatName) if mat == nil { io.PfRed("cannot get material\n") return } //io.Pfcyan("mat = %v\n", mat) // get and initialise model mdl, _ := msolid.GetModel(in.SimFn, in.MatName, mat.Model, false) if mdl == nil { io.PfRed("cannot allocate model\n") return } ndim := 3 pstress := false mdl.Init(ndim, pstress, mat.Prms) //io.Pforan("mdl = %v\n", mdl) // load path var pth msolid.Path err = pth.ReadJson(ndim, path.Join(in.Dir, in.PathFn)) if err != nil { io.PfRed("cannot read path file %v\n", err) return } //io.PfYel("pth = %v\n", pth) // driver var drv msolid.Driver drv.InitWithModel(ndim, mdl) // run err = drv.Run(&pth) if err != nil { io.Pfred("driver: Run failed: %v\n", err) } // plot //if false { if true { var plr msolid.Plotter plr.SetFig(false, in.FigEps, in.FigProp, in.FigWid, "/tmp", "cmd_"+in.SimFn) var epm msolid.EPmodel if m, ok := mdl.(msolid.EPmodel); ok { plr.SetModel(m) epm = m } if epm != nil { //plr.Phi = epm.Get_phi() b := epm.Get_bsmp() epm.Set_bsmp(0) plr.YsClr0 = "magenta" plr.Plot(in.PlotSet, drv.Res, nil, true, false) epm.Set_bsmp(b) } plr.YsClr0 = "green" plr.Plot(in.PlotSet, drv.Res, drv.Eps, false, true) } // plot ys if false { //if true { plt.Reset() m := mdl.(*msolid.SmpInvs) φ := m.Get_phi() σcCte := 10.0 M := tsr.Phi2M(φ, "oct") rmin, rmax := 0.0, 1.28*M*σcCte nr, nα := 31, 81 //nr, nα := 31, 1001 npolarc := true simplec := false only0 := false grads := false showpts := false ferr := 10.0 tsr.PlotOct("fig_isofun02.png", σcCte, rmin, rmax, nr, nα, φ, m.Isof.Fa, m.Isof.Ga, npolarc, simplec, only0, grads, showpts, true, true, ferr) } }
func main() { // input data simfn := "elast.sim" matname := "lrm1" pcmax := 30.0 npts := 101 // parse flags flag.Parse() if len(flag.Args()) > 0 { simfn = flag.Arg(0) } if len(flag.Args()) > 1 { matname = flag.Arg(1) } if len(flag.Args()) > 2 { pcmax = io.Atof(flag.Arg(2)) } if len(flag.Args()) > 3 { npts = io.Atoi(flag.Arg(3)) } // check extension if io.FnExt(simfn) == "" { simfn += ".sim" } // print input data io.Pf("\nInput data\n") io.Pf("==========\n") io.Pf(" simfn = %30s // simulation filename\n", simfn) io.Pf(" matname = %30s // material name\n", matname) io.Pf(" pcmax = %30v // max pc\n", pcmax) io.Pf(" npts = %30v // number of points\n", npts) io.Pf("\n") // load simulation sim := inp.ReadSim("", simfn, "lrm_", false) if sim == nil { io.PfRed("cannot load simulation\n") return } // get material data mat := sim.Mdb.Get(matname) if mat == nil { io.PfRed("cannot get material\n") return } io.Pforan("mat = %v\n", mat) // get and initialise model mdl := mreten.GetModel(simfn, matname, mat.Model, false) if mdl == nil { io.PfRed("cannot allocate model\n") return } mdl.Init(mat.Prms) // plot drying path d_Pc := utl.LinSpace(0, pcmax, npts) d_Sl := make([]float64, npts) d_Sl[0] = 1 var err error for i := 1; i < npts; i++ { d_Sl[i], err = mreten.Update(mdl, d_Pc[i-1], d_Sl[i-1], d_Pc[i]-d_Pc[i-1]) if err != nil { io.PfRed("drying: cannot updated model\n%v\n", err) return } } plt.Plot(d_Pc, d_Sl, io.Sf("'b-', label='%s (dry)', clip_on=0", matname)) // plot wetting path w_Pc := utl.LinSpace(pcmax, 0, npts) w_Sl := make([]float64, npts) w_Sl[0] = d_Sl[npts-1] for i := 1; i < npts; i++ { w_Sl[i], err = mreten.Update(mdl, w_Pc[i-1], w_Sl[i-1], w_Pc[i]-w_Pc[i-1]) if err != nil { io.PfRed("wetting: cannot updated model\n%v\n", err) return } } plt.Plot(w_Pc, w_Sl, io.Sf("'c-', label='%s (wet)', clip_on=0", matname)) // save results type Results struct{ Pc, Sl []float64 } res := Results{append(d_Pc, w_Pc...), append(d_Sl, w_Sl...)} var buf bytes.Buffer enc := json.NewEncoder(&buf) err = enc.Encode(&res) if err != nil { io.PfRed("cannot encode results\n") return } fn := path.Join(sim.Data.DirOut, matname+".dat") io.WriteFile(fn, &buf) io.Pf("file <[1;34m%s[0m> written\n", fn) // show figure plt.AxisYrange(0, 1) plt.Cross() plt.Gll("$p_c$", "$s_{\\ell}$", "") plt.Show() }
func main() { // catch errors defer func() { if err := recover(); err != nil { io.PfRed("ERROR: %v\n", err) } }() // input data simfn, _ := io.ArgToFilename(0, "elast", ".sim", true) matname := io.ArgToString(1, "lrm1") pcmax := io.ArgToFloat(2, 30.0) npts := io.ArgToInt(3, 101) // print input table io.Pf("\n%s\n", io.ArgsTable( "simulation filename", "simfn", simfn, "material name", "matname", matname, "max pc", "pcmax", pcmax, "number of points", "npts", npts, )) // load simulation sim := inp.ReadSim(simfn, "lrm", false, 0) if sim == nil { io.PfRed("cannot load simulation\n") return } // get material data mat := sim.MatParams.Get(matname) if mat == nil { io.PfRed("cannot get material\n") return } io.Pforan("mat = %v\n", mat) // get and initialise model mdl := mreten.GetModel(simfn, matname, mat.Model, false) if mdl == nil { io.PfRed("cannot allocate model\n") return } mdl.Init(mat.Prms) // plot drying path d_Pc := utl.LinSpace(0, pcmax, npts) d_Sl := make([]float64, npts) d_Sl[0] = 1 var err error for i := 1; i < npts; i++ { d_Sl[i], err = mreten.Update(mdl, d_Pc[i-1], d_Sl[i-1], d_Pc[i]-d_Pc[i-1]) if err != nil { io.PfRed("drying: cannot updated model\n%v\n", err) return } } plt.Plot(d_Pc, d_Sl, io.Sf("'b-', label='%s (dry)', clip_on=0", matname)) // plot wetting path w_Pc := utl.LinSpace(pcmax, 0, npts) w_Sl := make([]float64, npts) w_Sl[0] = d_Sl[npts-1] for i := 1; i < npts; i++ { w_Sl[i], err = mreten.Update(mdl, w_Pc[i-1], w_Sl[i-1], w_Pc[i]-w_Pc[i-1]) if err != nil { io.PfRed("wetting: cannot updated model\n%v\n", err) return } } plt.Plot(w_Pc, w_Sl, io.Sf("'c-', label='%s (wet)', clip_on=0", matname)) // save results type Results struct{ Pc, Sl []float64 } res := Results{append(d_Pc, w_Pc...), append(d_Sl, w_Sl...)} var buf bytes.Buffer enc := json.NewEncoder(&buf) err = enc.Encode(&res) if err != nil { io.PfRed("cannot encode results\n") return } fn := path.Join(sim.Data.DirOut, matname+".dat") io.WriteFile(fn, &buf) io.Pf("file <[1;34m%s[0m> written\n", fn) // show figure plt.AxisYrange(0, 1) plt.Cross("") plt.Gll("$p_c$", "$s_{\\ell}$", "") plt.Show() }