func PrintSolutions(fed *FemData, sols []*goga.Solution) (l string) { goga.SortByOva(sols, 0) l = io.Sf("%8s%6s%6s |%s\n", "weight", "umax", "smax", "areas") for _, sol := range sols { mob, fail, weight, umax, smax, errU, errS := fed.RunFEM(sol.Int, sol.Flt, 0, false) if mob > 0 || fail > 0 || errU > 0 || errS > 0 { l += io.Sf("%20s |%s\n", "unfeasible ", FltFormatter(sol.Flt)) continue } l += io.Sf("%8.1f%6.2f%6.2f |%s\n", weight, umax, smax, FltFormatter(sol.Flt)) } return }
func solve_problem(problem int) (opt *goga.Optimiser) { io.Pf("\n\n------------------------------------- problem = %d ---------------------------------------\n", problem) // GA parameters opt = new(goga.Optimiser) opt.Default() opt.Nsol = 20 opt.Ncpu = 1 opt.Tf = 40 opt.Verbose = false opt.EpsH = 1e-3 // problem variables var ng, nh int var fcn goga.MinProb_t var cprms goga.ContourParams cprms.Npts = 201 eps_prop := 0.8 eps_size := 300.0 // problems switch problem { // problem # 1: quadratic function with inequalities case 1: opt.FltMin = []float64{-2, -2} opt.FltMax = []float64{2, 2} ng, nh = 5, 0 fcn = func(f, g, h, x []float64, ξ []int, cpu int) { f[0] = x[0]*x[0]/2.0 + x[1]*x[1] - x[0]*x[1] - 2.0*x[0] - 6.0*x[1] g[0] = 2.0 - x[0] - x[1] // ≥ 0 g[1] = 2.0 + x[0] - 2.0*x[1] // ≥ 0 g[2] = 3.0 - 2.0*x[0] - x[1] // ≥ 0 g[3] = x[0] // ≥ 0 g[4] = x[1] // ≥ 0 } // problem # 2: circle with equality constraint case 2: xe := 1.0 // centre of circle le := -0.4 // selected level of f(x) ys := xe - (1.0+le)/math.Sqrt2 // coordinates of minimum point with level=le y0 := 2.0*ys + xe // vertical axis intersect of straight line defined by c(x) xc := []float64{xe, xe} // centre opt.FltMin = []float64{-1, -1} opt.FltMax = []float64{3, 3} ng, nh = 0, 1 fcn = func(f, g, h, x []float64, ξ []int, cpu int) { res := 0.0 for i := 0; i < len(x); i++ { res += (x[i] - xc[i]) * (x[i] - xc[i]) } f[0] = math.Sqrt(res) - 1.0 h[0] = x[0] + x[1] + xe - y0 } // problem # 3: Deb (2000) narrow crescent-shaped region case 3: opt.FltMin = []float64{0, 0} opt.FltMax = []float64{6, 6} ng, nh = 2, 0 fcn = func(f, g, h, x []float64, ξ []int, cpu int) { f[0] = math.Pow(x[0]*x[0]+x[1]-11.0, 2.0) + math.Pow(x[0]+x[1]*x[1]-7.0, 2.0) g[0] = 4.84 - math.Pow(x[0]-0.05, 2.0) - math.Pow(x[1]-2.5, 2.0) // ≥ 0 g[1] = x[0]*x[0] + math.Pow(x[1]-2.5, 2.0) - 4.84 // ≥ 0 } cprms.Args = "levels=[1, 10, 25, 50, 100, 200, 400, 600, 1000, 1500]" cprms.Csimple = true cprms.Lwg = 0.6 eps_prop = 1 } // initialise optimiser nf := 1 opt.Init(goga.GenTrialSolutions, nil, fcn, nf, ng, nh) // initial solutions sols0 := opt.GetSolutionsCopy() // solve opt.Solve() // results goga.SortByOva(opt.Solutions, 0) best := opt.Solutions[0] io.Pforan("X_best = %v\n", best.Flt) io.Pforan("F_best = %v\n", best.Ova[0]) io.Pforan("Oor = %v\n", best.Oor) // text box extra := func() { str := io.Sf("$f(%.5f,%.5f)=%.5f$", best.Flt[0], best.Flt[1], best.Ova[0]) plt.Text(0.98, 0.03, str, "size=12, transform=gca().transAxes, ha='right', zorder=2000, bbox=dict(boxstyle='round', facecolor='lightgray')") } // plot plt.SetForEps(eps_prop, eps_size) goga.PlotFltFltContour(io.Sf("simpleoptm%d", problem), opt, sols0, 0, 1, 0, cprms, extra, true) return opt }
func runone(ncpu int) (nsol, tf int, elaspsedTime time.Duration) { // input filename fn, fnkey := io.ArgToFilename(0, "ground10", ".sim", true) // GA parameters var opt goga.Optimiser opt.Read("ga-" + fnkey + ".json") opt.GenType = "rnd" nsol, tf = opt.Nsol, opt.Tf postproc := true if ncpu > 0 { opt.Ncpu = ncpu postproc = false } // FEM data := make([]*FemData, opt.Ncpu) for i := 0; i < opt.Ncpu; i++ { data[i] = NewData(fn, fnkey, i) } io.Pforan("MaxWeight = %v\n", data[0].MaxWeight) // set integers if data[0].Opt.BinInt { opt.CxInt = goga.CxInt opt.MtInt = goga.MtIntBin opt.BinInt = data[0].Ncells } // set floats opt.FltMin = make([]float64, data[0].Nareas) opt.FltMax = make([]float64, data[0].Nareas) for i := 0; i < data[0].Nareas; i++ { opt.FltMin[i] = data[0].Opt.Amin opt.FltMax[i] = data[0].Opt.Amax } // initialise optimiser opt.Nova = 2 // weight and deflection opt.Noor = 4 // mobility, feasibility, maxdeflection, stress opt.Init(goga.GenTrialSolutions, func(sol *goga.Solution, cpu int) { mob, fail, weight, umax, _, errU, errS := data[cpu].RunFEM(sol.Int, sol.Flt, 0, false) sol.Ova[0] = weight sol.Ova[1] = umax sol.Oor[0] = mob sol.Oor[1] = fail sol.Oor[2] = errU sol.Oor[3] = errS }, nil, 0, 0, 0) // initial solutions var sols0 []*goga.Solution if false { sols0 = opt.GetSolutionsCopy() } // benchmark initialTime := time.Now() defer func() { elaspsedTime = time.Now().Sub(initialTime) }() // solve opt.Verbose = true opt.Solve() goga.SortByOva(opt.Solutions, 0) // post processing if !postproc { return } // check nfailed, front0 := goga.CheckFront0(&opt, true) // save results var log, res bytes.Buffer io.Ff(&log, opt.LogParams()) io.Ff(&res, PrintSolutions(data[0], opt.Solutions)) io.Ff(&res, io.Sf("\n\nnfailed = %d\n", nfailed)) io.WriteFileVD("/tmp/goga", fnkey+".log", &log) io.WriteFileVD("/tmp/goga", fnkey+".res", &res) // plot Pareto-optimal front feasibleOnly := true plt.SetForEps(0.8, 350) if strings.HasPrefix(fnkey, "ground10") { _, ref, _ := io.ReadTable("p460_fig300.dat") plt.Plot(ref["w"], ref["u"], "'b-', label='reference'") } fmtAll := &plt.Fmt{L: "final solutions", M: ".", C: "orange", Ls: "none", Ms: 3} fmtFront := &plt.Fmt{L: "final Pareto front", C: "r", M: "o", Ms: 3, Ls: "none"} goga.PlotOvaOvaPareto(&opt, sols0, 0, 1, feasibleOnly, fmtAll, fmtFront) plt.Gll("weight ($f_0$)", "deflection ($f_1)$", "") //, "leg_out=1, leg_ncol=4, leg_hlen=1.5") if strings.HasPrefix(fnkey, "ground10") { plt.AxisRange(1800, 14000, 1, 6) } // plot selected results ia, ib, ic, id, ie := 0, 0, 0, 0, 0 nfront0 := len(front0) io.Pforan("nfront0 = %v\n", nfront0) if nfront0 > 4 { ib = nfront0 / 10 ic = nfront0 / 5 id = nfront0 / 2 ie = nfront0 - 1 } A := front0[ia] B := front0[ib] C := front0[ic] D := front0[id] E := front0[ie] wid, hei := 0.20, 0.10 draw_truss(data[0], "A", A, 0.17, 0.75, wid, hei) draw_truss(data[0], "B", B, 0.20, 0.55, wid, hei) draw_truss(data[0], "C", C, 0.28, 0.33, wid, hei) draw_truss(data[0], "D", D, 0.47, 0.22, wid, hei) draw_truss(data[0], "E", E, 0.70, 0.18, wid, hei) // save figure plt.SaveD("/tmp/goga", fnkey+".eps") // tex file title := "Shape and topology optimisation. Results." label := "topoFront" document := true compact := true tex_results("/tmp/goga", "tmp_"+fnkey, title, label, data[0], A, B, C, D, E, document, compact) document = false tex_results("/tmp/goga", fnkey, title, label, data[0], A, B, C, D, E, document, compact) return }
func solve_problem(fnkey string, problem int) (opt *goga.Optimiser) { // GA parameters opt = new(goga.Optimiser) opt.Default() // options for report opt.RptFmtF = "%.4f" opt.RptFmtX = "%.3f" opt.RptFmtFdev = "%.1e" opt.RptWordF = "\\beta" opt.HistFmt = "%.2f" opt.HistNdig = 3 opt.HistDelFmin = 0.005 opt.HistDelFmax = 0.005 // FORM data var lsft LSF_T var vars rnd.Variables // simple problem or FEM sim if fnkey == "simple" { opt.Read("ga-simple.json") opt.ProbNum = problem lsft, vars = get_simple_data(opt) fnkey += io.Sf("-%d", opt.ProbNum) io.Pf("\n----------------------------------- simple problem %d --------------------------------\n", opt.ProbNum) } else { opt.Read("ga-" + fnkey + ".json") lsft, vars = get_femsim_data(opt, fnkey) io.Pf("\n----------------------------------- femsim %s --------------------------------\n", fnkey) } // set limits nx := len(vars) opt.FltMin = make([]float64, nx) opt.FltMax = make([]float64, nx) for i, dat := range vars { opt.FltMin[i] = dat.Min opt.FltMax[i] = dat.Max } // log input var buf bytes.Buffer io.Ff(&buf, "%s", opt.LogParams()) io.WriteFileVD("/tmp/gosl", fnkey+".log", &buf) // initialise distributions err := vars.Init() if err != nil { chk.Panic("cannot initialise distributions:\n%v", err) } // plot distributions if opt.PlotSet1 { io.Pf(". . . . . . . . plot distributions . . . . . . . .\n") np := 201 for i, dat := range vars { plt.SetForEps(0.75, 250) dat.PlotPdf(np, "'b-',lw=2,zorder=1000") //plt.AxisXrange(dat.Min, dat.Max) plt.SetXnticks(15) plt.SaveD("/tmp/sims", io.Sf("distr-%s-%d.eps", fnkey, i)) } return } // objective function nf := 1 var ng, nh int var fcn goga.MinProb_t var obj goga.ObjFunc_t switch opt.Strategy { // argmin_x{ β(y(x)) | lsf(x) ≤ 0 } // f ← sqrt(y dot y) // g ← -lsf(x) ≥ 0 // h ← out-of-range in case Transform fails case 0: ng, nh = 1, 1 fcn = func(f, g, h, x []float64, ξ []int, cpu int) { // original and normalised variables h[0] = 0 y, invalid := vars.Transform(x) if invalid { h[0] = 1 return } // objective value f[0] = math.Sqrt(la.VecDot(y, y)) // β // inequality constraint lsf, failed := lsft(x, cpu) g[0] = -lsf h[0] = failed } // argmin_x{ β(y(x)) | lsf(x) = 0 } // f ← sqrt(y dot y) // h0 ← lsf(x) // h1 ← out-of-range in case Transform fails case 1: ng, nh = 0, 2 fcn = func(f, g, h, x []float64, ξ []int, cpu int) { // original and normalised variables h[0], h[1] = 0, 0 y, invalid := vars.Transform(x) if invalid { h[0], h[1] = 1, 1 return } // objective value f[0] = math.Sqrt(la.VecDot(y, y)) // β // equality constraint lsf, failed := lsft(x, cpu) h[0] = lsf h[1] = failed // induce minmisation of h0 //f[0] += math.Abs(lsf) } case 2: opt.Nova = 1 opt.Noor = 2 obj = func(sol *goga.Solution, cpu int) { // clear out-of-range values sol.Oor[0] = 0 // invalid transformation or FEM failed sol.Oor[1] = 0 // g(x) ≤ 0 was violated // original and normalised variables x := sol.Flt y, invalid := vars.Transform(x) if invalid { sol.Oor[0] = goga.INF sol.Oor[1] = goga.INF return } // objective value sol.Ova[0] = math.Sqrt(la.VecDot(y, y)) // β // inequality constraint lsf, failed := lsft(x, cpu) sol.Oor[0] = failed sol.Oor[1] = fun.Ramp(lsf) } default: chk.Panic("strategy %d is not available", opt.Strategy) } // initialise optimiser opt.Init(goga.GenTrialSolutions, obj, fcn, nf, ng, nh) // solve io.Pf(". . . . . . . . running . . . . . . . .\n") opt.RunMany("", "") goga.StatF(opt, 0, true) io.Pfblue2("Tsys = %v\n", opt.SysTimeAve) // check goga.CheckFront0(opt, true) // results sols := goga.GetFeasible(opt.Solutions) if len(sols) > 0 { goga.SortByOva(sols, 0) best := sols[0] io.Pforan("x = %.6f\n", best.Flt) io.Pforan("xref = %.6f\n", opt.RptXref) io.Pforan("β = %v (%v)\n", best.Ova[0], opt.RptFref[0]) } return }
func solve_problem(problem int) (opt *goga.Optimiser) { io.Pf("\n\n------------------------------------- problem = %d ---------------------------------------\n", problem) // GA parameters opt = new(goga.Optimiser) opt.Default() opt.Nsol = 200 opt.Ncpu = 5 opt.Tf = 500 opt.Nsamples = 2 opt.DEC = 0.01 // options for report opt.HistNsta = 6 opt.HistLen = 13 opt.RptFmtE = "%.4e" opt.RptFmtL = "%.4e" opt.RptFmtEdev = "%.3e" opt.RptFmtLdev = "%.3e" opt.RptFmin = make([]float64, 3) opt.RptFmax = make([]float64, 3) for i := 0; i < 3; i++ { opt.RptFmax[i] = 1 } // problem variables var αcone float64 // cone half-opening angle var nf, ng, nh int // number of functions var fcn goga.MinProb_t // functions var plot_solution func() // plot solution in 3D // problems switch problem { // DTLZ1 case 1: opt.RptName = "DTLZ1" opt.FltMin = make([]float64, 7) opt.FltMax = make([]float64, 7) for i := 0; i < 7; i++ { opt.FltMin[i], opt.FltMax[i] = 0, 1 } nf, ng, nh = 3, 0, 0 fcn = func(f, g, h, x []float64, ξ []int, cpu int) { c := 5.0 for i := 2; i < 7; i++ { c += math.Pow((x[i]-0.5), 2.0) - math.Cos(20.0*PI*(x[i]-0.5)) } c *= 100.0 f[0] = 0.5 * x[0] * x[1] * (1.0 + c) f[1] = 0.5 * x[0] * (1.0 - x[1]) * (1.0 + c) f[2] = 0.5 * (1.0 - x[0]) * (1.0 + c) } opt.Multi_fcnErr = func(f []float64) float64 { return f[0] + f[1] + f[2] - 0.5 } plot_solution = func() { plot_plane(false) } opt.RptFmax = []float64{0.5, 0.5, 0.5} // DTLZ2 case 2: opt.RptName = "DTLZ2" opt.FltMin = make([]float64, 12) opt.FltMax = make([]float64, 12) for i := 0; i < 12; i++ { opt.FltMin[i], opt.FltMax[i] = 0, 1 } nf, ng, nh = 3, 0, 0 fcn = func(f, g, h, x []float64, ξ []int, cpu int) { var c float64 for i := 2; i < 12; i++ { c += math.Pow((x[i] - 0.5), 2.0) } f[0] = (1.0 + c) * math.Cos(x[0]*PI/2.0) * math.Cos(x[1]*PI/2.0) f[1] = (1.0 + c) * math.Cos(x[0]*PI/2.0) * math.Sin(x[1]*PI/2.0) f[2] = (1.0 + c) * math.Sin(x[0]*PI/2.0) } opt.Multi_fcnErr = func(f []float64) float64 { return f[0]*f[0] + f[1]*f[1] + f[2]*f[2] - 1.0 } plot_solution = func() { plot_sphere(false) } // DTLZ3 case 3: opt.RptName = "DTLZ3" opt.FltMin = make([]float64, 12) opt.FltMax = make([]float64, 12) for i := 0; i < 12; i++ { opt.FltMin[i], opt.FltMax[i] = 0, 1 } nf, ng, nh = 3, 0, 0 fcn = func(f, g, h, x []float64, ξ []int, cpu int) { c := 10.0 for i := 2; i < 12; i++ { c += math.Pow((x[i]-0.5), 2.0) - math.Cos(20.0*PI*(x[i]-0.5)) } c *= 100.0 f[0] = (1.0 + c) * math.Cos(x[0]*PI/2.0) * math.Cos(x[1]*PI/2.0) f[1] = (1.0 + c) * math.Cos(x[0]*PI/2.0) * math.Sin(x[1]*PI/2.0) f[2] = (1.0 + c) * math.Sin(x[0]*PI/2.0) } opt.Multi_fcnErr = func(f []float64) float64 { return f[0]*f[0] + f[1]*f[1] + f[2]*f[2] - 1.0 } plot_solution = func() { plot_sphere(false) } // DTLZ4 case 4: opt.RptName = "DTLZ4" opt.FltMin = make([]float64, 12) opt.FltMax = make([]float64, 12) for i := 0; i < 12; i++ { opt.FltMin[i], opt.FltMax[i] = 0, 1 } nf, ng, nh = 3, 0, 0 fcn = func(f, g, h, x []float64, ξ []int, cpu int) { var c float64 for i := 2; i < 12; i++ { c += math.Pow((x[i] - 0.5), 2.0) } a := 100.0 f[0] = (1.0 + c) * math.Cos(math.Pow(x[0], a)*PI/2.0) * math.Cos(math.Pow(x[1], a)*PI/2.0) f[1] = (1.0 + c) * math.Cos(math.Pow(x[0], a)*PI/2.0) * math.Sin(math.Pow(x[1], a)*PI/2.0) f[2] = (1.0 + c) * math.Sin(math.Pow(x[0], a)*PI/2.0) } opt.Multi_fcnErr = func(f []float64) float64 { return f[0]*f[0] + f[1]*f[1] + f[2]*f[2] - 1.0 } plot_solution = func() { plot_sphere(false) } // DTLZ2x (convex) case 5: opt.RptName = "DTLZ2x" opt.FltMin = make([]float64, 12) opt.FltMax = make([]float64, 12) for i := 0; i < 12; i++ { opt.FltMin[i], opt.FltMax[i] = 0, 1 } nf, ng, nh = 3, 0, 0 fcn = func(f, g, h, x []float64, ξ []int, cpu int) { var c float64 for i := 2; i < 12; i++ { c += math.Pow((x[i] - 0.5), 2.0) } f[0] = (1.0 + c) * math.Cos(x[0]*PI/2.0) * math.Cos(x[1]*PI/2.0) f[1] = (1.0 + c) * math.Cos(x[0]*PI/2.0) * math.Sin(x[1]*PI/2.0) f[2] = (1.0 + c) * math.Sin(x[0]*PI/2.0) f[0] = math.Pow(f[0], 4.0) f[1] = math.Pow(f[1], 4.0) f[2] = math.Pow(f[2], 2.0) } opt.Multi_fcnErr = func(f []float64) float64 { return math.Pow(math.Abs(f[0]), 0.5) + math.Pow(math.Abs(f[1]), 0.5) + f[2] - 1.0 } plot_solution = func() { plot_convex(1.0, false) } // DTLZ2c (constraint) case 6: opt.RptName = "DTLZ2c" opt.FltMin = make([]float64, 12) opt.FltMax = make([]float64, 12) for i := 0; i < 12; i++ { opt.FltMin[i], opt.FltMax[i] = 0, 1 } nf, ng, nh = 3, 1, 0 //αcone = math.Atan(1.0 / SQ2) // <<< touches lower plane //αcone = PI/2.0 - αcone // <<< touches upper plane αcone = 15.0 * PI / 180.0 fcn = func(f, g, h, x []float64, ξ []int, cpu int) { var c float64 for i := 2; i < 12; i++ { c += math.Pow((x[i] - 0.5), 2.0) } f[0] = (1.0 + c) * math.Cos(x[0]*PI/2.0) * math.Cos(x[1]*PI/2.0) f[1] = (1.0 + c) * math.Cos(x[0]*PI/2.0) * math.Sin(x[1]*PI/2.0) f[2] = (1.0 + c) * math.Sin(x[0]*PI/2.0) g[0] = math.Tan(αcone) - cone_angle(f) } opt.Multi_fcnErr = func(f []float64) float64 { return f[0]*f[0] + f[1]*f[1] + f[2]*f[2] - 1.0 } plot_solution = func() { plot_sphere(false) plot_cone(αcone, true) } // Superquadric 1 case 7: opt.RptName = "SUQ1" opt.FltMin = make([]float64, 12) opt.FltMax = make([]float64, 12) for i := 0; i < 12; i++ { opt.FltMin[i], opt.FltMax[i] = 0, 1 } a, b, c := 0.5, 0.5, 0.5 A, B, C := 2.0/a, 2.0/b, 2.0/c nf, ng, nh = 3, 0, 0 fcn = func(f, g, h, x []float64, ξ []int, cpu int) { var c float64 for i := 2; i < 12; i++ { c += math.Pow((x[i] - 0.5), 2.0) } f[0] = (1.0 + c) * cosX(x[0]*PI/2.0, A) * cosX(x[1]*PI/2.0, A) f[1] = (1.0 + c) * cosX(x[0]*PI/2.0, B) * sinX(x[1]*PI/2.0, B) f[2] = (1.0 + c) * sinX(x[0]*PI/2.0, C) } opt.Multi_fcnErr = func(f []float64) float64 { return math.Pow(math.Abs(f[0]), a) + math.Pow(math.Abs(f[1]), b) + math.Pow(math.Abs(f[2]), c) - 1.0 } plot_solution = func() { plot_superquadric(a, b, c, false) } // Superquadric 2 case 8: opt.RptName = "SUQ2" opt.FltMin = make([]float64, 12) opt.FltMax = make([]float64, 12) for i := 0; i < 12; i++ { opt.FltMin[i], opt.FltMax[i] = 0, 1 } a, b, c := 2.0, 1.0, 0.5 A, B, C := 2.0/a, 2.0/b, 2.0/c nf, ng, nh = 3, 0, 0 fcn = func(f, g, h, x []float64, ξ []int, cpu int) { var c float64 for i := 2; i < 12; i++ { c += math.Pow((x[i] - 0.5), 2.0) } f[0] = (1.0 + c) * cosX(x[0]*PI/2.0, A) * cosX(x[1]*PI/2.0, A) f[1] = (1.0 + c) * cosX(x[0]*PI/2.0, B) * sinX(x[1]*PI/2.0, B) f[2] = (1.0 + c) * sinX(x[0]*PI/2.0, C) } opt.Multi_fcnErr = func(f []float64) float64 { return math.Pow(math.Abs(f[0]), a) + math.Pow(math.Abs(f[1]), b) + math.Pow(math.Abs(f[2]), c) - 1.0 } plot_solution = func() { plot_superquadric(a, b, c, false) } default: chk.Panic("problem %d is not available", problem) } // initialise optimiser opt.Init(goga.GenTrialSolutions, nil, fcn, nf, ng, nh) // solve opt.RunMany("", "") goga.StatMulti(opt, true) // check goga.CheckFront0(opt, true) // print results if false { goga.SortByOva(opt.Solutions, 0) m, l := opt.Nsol/2, opt.Nsol-1 A, B, C := opt.Solutions[0], opt.Solutions[m], opt.Solutions[l] io.Pforan("A = %v\n", A.Flt) io.Pforan("B = %v\n", B.Flt) io.Pforan("C = %v\n", C.Flt) } // plot results if false { py_plot3(0, 1, nf-1, opt, plot_solution, true, true) } // vtk if false { ptRad := 0.015 if opt.RptName == "DTLZ1" { ptRad = 0.01 } vtk_plot3(opt, αcone, ptRad, true, true) } // star plot if false { plt.SetForEps(1, 300) goga.PlotStar(opt) plt.SaveD("/tmp/goga", io.Sf("starplot_%s.eps", opt.RptName)) } // write all results if false { goga.WriteAllValues("/tmp/goga", "res_three-obj", opt) } return }