func (o *Plotter) Plot_ed_q(x, y []float64, res []*State, sts [][]float64, last bool) { nr := len(res) if len(sts) != nr { return } k := nr - 1 for i := 0; i < nr; i++ { x[i] = o.Ed[i] * 100.0 if o.QdivP { y[i] = o.Q[i] / o.P[i] } else { y[i] = o.Q[i] } if o.Multq { y[i] *= fun.Sign(o.W[i]) } } plt.Plot(x, y, io.Sf("'r.', ls='%s', clip_on=0, color='%s', marker='%s', label=r'%s'", o.Ls, o.Clr, o.Mrk, o.Lbl)) plt.PlotOne(x[0], y[0], io.Sf("'bo', clip_on=0, color='%s', marker='%s', ms=%d", o.SpClr, o.SpMrk, o.SpMs)) plt.PlotOne(x[k], y[k], io.Sf("'bs', clip_on=0, color='%s', marker='%s', ms=%d", o.SpClr, o.EpMrk, o.EpMs)) if last { ylbl := "$q$" if o.QdivP { ylbl = "$q/p$" } plt.Gll("$\\varepsilon_d\\;[\\%]$", ylbl, "leg_out=1, leg_ncol=4, leg_hlen=1.5") if lims, ok := o.Lims["ed,q"]; ok { plt.AxisLims(lims) } } }
// Update updates stresses for given strains func (o *RjointM1) Update(s *OnedState, σcNew, Δω float64) (err error) { // limit σcNew if σcNew < 0 { σcNew = 0 } // internal values τ := &s.Sig ωpb := &s.Alp[0] // trial stress τ_tr := (*τ) + o.ks*Δω f_tr := math.Abs(τ_tr) - (o.τy0 + o.kh*(*ωpb) + o.μ*σcNew) // elastic update if f_tr <= 0.0 { *τ = τ_tr s.Loading = false return } // plastic update Δγ := f_tr / (o.ks + o.kh) *τ = τ_tr - o.ks*Δγ*fun.Sign(τ_tr) *ωpb += Δγ s.Loading = true return }
func (o *Plotter) Plot_p_q(x, y []float64, res []*State, sts [][]float64, last bool) { // stress path nr := len(res) k := nr - 1 var xmi, xma, ymi, yma float64 for i := 0; i < nr; i++ { x[i], y[i] = o.P[i], o.Q[i] if o.Multq { mult := fun.Sign(o.W[i]) y[i] *= mult } if o.UseOct { x[i] *= tsr.SQ3 y[i] *= tsr.SQ2by3 } if i == 0 { xmi, xma = x[i], x[i] ymi, yma = y[i], y[i] } else { xmi = min(xmi, x[i]) xma = max(xma, x[i]) ymi = min(ymi, y[i]) yma = max(yma, y[i]) } if o.SMPon { x[i], y[i], _ = tsr.M_pq_smp(res[i].Sig, o.SMPa, o.SMPb, o.SMPβ, o.SMPϵ) } } plt.Plot(x, y, io.Sf("'r.', ls='%s', clip_on=0, color='%s', marker='%s', label=r'%s'", o.Ls, o.Clr, o.Mrk, o.Lbl)) plt.PlotOne(x[0], y[0], io.Sf("'bo', clip_on=0, color='%s', marker='%s', ms=%d", o.SpClr, o.SpMrk, o.SpMs)) plt.PlotOne(x[k], y[k], io.Sf("'bs', clip_on=0, color='%s', marker='%s', ms=%d", o.SpClr, o.EpMrk, o.EpMs)) // yield surface if o.WithYs && o.m != nil { mx, my := 1.0, 1.0 if o.UseOct { mx, my = tsr.SQ3, tsr.SQ2by3 } if o.UsePmin { xmi = min(xmi, o.Pmin*mx) } if o.UsePmax { xma = max(xma, o.Pmax*mx) yma = max(yma, o.Pmax*my) } xmi, xma, ymi, yma = o.fix_range(xmi, xmi, xma, ymi, yma) if o.PqLims != nil { xmi, xma, ymi, yma = o.PqLims[0], o.PqLims[1], o.PqLims[2], o.PqLims[3] } //io.Pforan("xmi,xma ymi,yma = %v,%v %v,%v\n", xmi,xma, ymi,yma) dx := (xma - xmi) / float64(o.NptsPq-1) dy := (yma - ymi) / float64(o.NptsPq-1) xx := la.MatAlloc(o.NptsPq, o.NptsPq) yy := la.MatAlloc(o.NptsPq, o.NptsPq) za := la.MatAlloc(o.NptsPq, o.NptsPq) zb := la.MatAlloc(o.NptsPq, o.NptsPq) var p, q, σa, σb, σc, λ0, λ1, λ2 float64 v := NewState(len(res[0].Sig), len(res[0].Alp), false, len(res[0].EpsE) > 0) for k := 0; k < nr; k++ { copy(v.Alp, res[k].Alp) v.Dgam = res[k].Dgam for i := 0; i < o.NptsPq; i++ { for j := 0; j < o.NptsPq; j++ { xx[i][j] = xmi + float64(i)*dx yy[i][j] = ymi + float64(j)*dy p, q = xx[i][j], yy[i][j] if o.UseOct { p /= tsr.SQ3 q /= tsr.SQ2by3 } σa, σb, σc = tsr.PQW2O(p, q, o.W[k]) λ0, λ1, λ2 = tsr.O2L(σa, σb, σc) v.Sig[0], v.Sig[1], v.Sig[2] = λ0, λ1, λ2 ys := o.m.YieldFuncs(v) za[i][j] = ys[0] if o.nsurf > 1 { zb[i][j] = ys[1] } if o.SMPon { xx[i][j], yy[i][j], _ = tsr.M_pq_smp(v.Sig, o.SMPa, o.SMPb, o.SMPβ, o.SMPϵ) } } } plt.ContourSimple(xx, yy, za, io.Sf("colors=['%s'], levels=[0], linestyles=['%s'], linewidths=[%g], clip_on=0", o.YsClr0, o.YsLs0, o.YsLw0)+o.ArgsYs) if o.nsurf > 1 { plt.ContourSimple(xx, yy, zb, io.Sf("colors=['%s'], levels=[0], linestyles=['%s'], linewidths=[%g], clip_on=0", o.YsClr1, o.YsLs1, o.YsLw1)+o.ArgsYs) } } } // predictor-corrector if len(o.PreCor) > 1 { var p, q, pnew, qnew float64 for i := 1; i < len(o.PreCor); i++ { p = tsr.M_p(o.PreCor[i-1]) q = tsr.M_q(o.PreCor[i-1]) pnew = tsr.M_p(o.PreCor[i]) qnew = tsr.M_q(o.PreCor[i]) if o.UseOct { p *= tsr.SQ3 pnew *= tsr.SQ3 q *= tsr.SQ2by3 qnew *= tsr.SQ2by3 } if o.SMPon { p, q, _ = tsr.M_pq_smp(o.PreCor[i-1], o.SMPa, o.SMPb, o.SMPβ, o.SMPϵ) pnew, qnew, _ = tsr.M_pq_smp(o.PreCor[i], o.SMPa, o.SMPb, o.SMPβ, o.SMPϵ) } if math.Abs(pnew-p) > 1e-10 || math.Abs(qnew-q) > 1e-10 { plt.Arrow(p, q, pnew, qnew, io.Sf("sc=%d, fc='%s', ec='%s'", o.ArrWid, o.ClrPC, o.ClrPC)) } } } // settings if last { plt.Equal() xl, yl := "$p_{cam}$", "$q_{cam}$" if o.UseOct { xl, yl = "$p_{oct}$", "$q_{oct}$" } if o.SMPon { xl, yl = "$p_{smp}$", "$q_{smp}$" } if o.AxLblX != "" { xl = o.AxLblX } if o.AxLblY != "" { yl = o.AxLblY } plt.Gll(xl, yl, "leg_out=1, leg_ncol=4, leg_hlen=1.5") if lims, ok := o.Lims["p,q"]; ok { plt.AxisLims(lims) } if lims, ok := o.Lims["p,q,ys"]; ok { plt.AxisLims(lims) } } }
func sinX(w, m float64) float64 { return fun.Sign(math.Sin(w)) * math.Pow(math.Abs(math.Sin(w)), m) }
func cosX(w, m float64) float64 { return fun.Sign(math.Cos(w)) * math.Pow(math.Abs(math.Cos(w)), m) }