示例#1
0
文件: e_up.go 项目: PatrickSchm/gofem
// adds element K to global Jacobian matrix Kb
func (o ElemUP) AddToKb(Kb *la.Triplet, sol *Solution, firstIt bool) (ok bool) {

	// clear matrices
	ndim := Global.Ndim
	u_nverts := o.U.Shp.Nverts
	p_nverts := o.P.Shp.Nverts
	la.MatFill(o.P.Kpp, 0)
	for i := 0; i < o.U.Nu; i++ {
		for j := 0; j < o.P.Np; j++ {
			o.Kup[i][j] = 0
			o.Kpu[j][i] = 0
		}
		for j := 0; j < o.U.Nu; j++ {
			o.U.K[i][j] = 0
		}
	}
	if o.P.DoExtrap {
		for i := 0; i < p_nverts; i++ {
			o.P.ρl_ex[i] = 0
			for j := 0; j < p_nverts; j++ {
				o.P.dρldpl_ex[i][j] = 0
			}
			for j := 0; j < o.U.Nu; j++ {
				o.dρldus_ex[i][j] = 0
			}
		}
	}

	// for each integration point
	dc := Global.DynCoefs
	var coef, plt, klr, ρL, Cl, divvs float64
	var ρl, ρ, Cpl, Cvs, dρdpl, dpdpl, dCpldpl, dCvsdpl, dklrdpl, dCpldusM, dρldusM, dρdusM float64
	var r, c int
	for idx, ip := range o.U.IpsElem {

		// interpolation functions, gradients and variables @ ip
		if !o.ipvars(idx, sol) {
			return
		}
		coef = o.U.Shp.J * ip.W
		S := o.U.Shp.S
		G := o.U.Shp.G
		Sb := o.P.Shp.S
		Gb := o.P.Shp.G

		// axisymmetric case
		radius := 1.0
		if Global.Sim.Data.Axisym {
			radius = o.U.Shp.AxisymGetRadius(o.U.X)
			coef *= radius
		}

		// auxiliary
		divvs = dc.α4*o.divus - o.U.divχs[idx] // divergence of Eq (35a) [1]

		// tpm variables
		plt = dc.β1*o.P.pl - o.P.ψl[idx] // Eq (35c) [1]
		klr = o.P.Mdl.Cnd.Klr(o.P.States[idx].A_sl)
		ρL = o.P.States[idx].A_ρL
		Cl = o.P.Mdl.Cl
		if LogErr(o.P.Mdl.CalcLs(o.P.res, o.P.States[idx], o.P.pl, o.divus, true), "AddToKb") {
			return
		}
		ρl = o.P.res.A_ρl
		ρ = o.P.res.A_ρ
		Cpl = o.P.res.Cpl
		Cvs = o.P.res.Cvs
		dρdpl = o.P.res.Dρdpl
		dpdpl = o.P.res.Dpdpl
		dCpldpl = o.P.res.DCpldpl
		dCvsdpl = o.P.res.DCvsdpl
		dklrdpl = o.P.res.Dklrdpl
		dCpldusM = o.P.res.DCpldusM
		dρldusM = o.P.res.DρldusM
		dρdusM = o.P.res.DρdusM

		// Kpu, Kup and Kpp
		for n := 0; n < p_nverts; n++ {
			for j := 0; j < ndim; j++ {

				// Kpu := ∂Rl^n/∂us^m and Kup := ∂Rus^m/∂pl^n; see Eq (47) of [1]
				for m := 0; m < u_nverts; m++ {
					c = j + m*ndim

					// add ∂rlb/∂us^m: Eqs (A.3) and (A.6) of [1]
					o.Kpu[n][c] += coef * Sb[n] * (dCpldusM*plt + dc.α4*Cvs) * G[m][j]

					// add ∂(ρl.wl)/∂us^m: Eq (A.8) of [1]
					for i := 0; i < ndim; i++ {
						o.Kpu[n][c] += coef * Gb[n][i] * S[m] * dc.α1 * ρL * klr * o.P.Mdl.Klsat[i][j]
					}

					// add ∂rl/∂pl^n and ∂p/∂pl^n: Eqs (A.9) and (A.11) of [1]
					o.Kup[c][n] += coef * (S[m]*Sb[n]*dρdpl*o.bs[j] - G[m][j]*Sb[n]*dpdpl)

					// for seepage face
					if o.P.DoExtrap {
						o.dρldus_ex[n][c] += o.P.Emat[n][idx] * dρldusM * G[m][j]
					}
				}

				// term in brackets in Eq (A.7) of [1]
				o.P.tmp[j] = Sb[n]*dklrdpl*o.hl[j] - klr*(Sb[n]*Cl*o.bs[j]+Gb[n][j])
			}

			// Kpp := ∂Rl^m/∂pl^n; see Eq (47) of [1]
			for m := 0; m < p_nverts; m++ {

				// add ∂rlb/dpl^n: Eq (A.5) of [1]
				o.P.Kpp[m][n] += coef * Sb[m] * Sb[n] * (dCpldpl*plt + dCvsdpl*divvs + dc.β1*Cpl)

				// add ∂(ρl.wl)/∂us^m: Eq (A.7) of [1]
				for i := 0; i < ndim; i++ {
					for j := 0; j < ndim; j++ {
						o.P.Kpp[m][n] -= coef * Gb[m][i] * o.P.Mdl.Klsat[i][j] * o.P.tmp[j]
					}
				}

				// inner summation term in Eq (22) of [2]
				if o.P.DoExtrap {
					o.P.dρldpl_ex[m][n] += o.P.Emat[m][idx] * Cpl * Sb[n]
				}
			}

			// Eq. (19) of [2]
			if o.P.DoExtrap {
				o.P.ρl_ex[n] += o.P.Emat[n][idx] * ρl
			}
		}

		// Kuu: add ∂rub^m/∂us^n; see Eqs (47) and (A.10) of [1]
		for m := 0; m < u_nverts; m++ {
			for i := 0; i < ndim; i++ {
				r = i + m*ndim
				for n := 0; n < u_nverts; n++ {
					for j := 0; j < ndim; j++ {
						c = j + n*ndim
						o.U.K[r][c] += coef * S[m] * (S[n]*dc.α1*ρ*tsr.It[i][j] + dρdusM*o.bs[i]*G[n][j])
					}
				}
			}
		}

		// consistent tangent model matrix
		if LogErr(o.U.MdlSmall.CalcD(o.U.D, o.U.States[idx], firstIt), "AddToKb") {
			return
		}

		// Kuu: add stiffness term ∂(σe・G^m)/∂us^n
		if o.U.UseB {
			IpBmatrix(o.U.B, ndim, u_nverts, G, radius, S)
			la.MatTrMulAdd3(o.U.K, coef, o.U.B, o.U.D, o.U.B) // K += coef * tr(B) * D * B
		} else {
			IpAddToKt(o.U.K, u_nverts, ndim, coef, G, o.U.D)
		}
	}

	// contribution from natural boundary conditions
	if o.P.HasSeep {
		if !o.P.add_natbcs_to_jac(sol) {
			return
		}
		if !o.add_natbcs_to_jac(sol) {
			return
		}
	}

	// add K to sparse matrix Kb
	//    _             _
	//   |  Kuu Kup  0   |
	//   |  Kpu Kpp Kpf  |
	//   |_ Kfu Kfp Kff _|
	//
	for i, I := range o.P.Pmap {
		for j, J := range o.P.Pmap {
			Kb.Put(I, J, o.P.Kpp[i][j])
		}
		for j, J := range o.P.Fmap {
			Kb.Put(I, J, o.P.Kpf[i][j])
			Kb.Put(J, I, o.P.Kfp[j][i])
		}
		for j, J := range o.U.Umap {
			Kb.Put(I, J, o.Kpu[i][j])
			Kb.Put(J, I, o.Kup[j][i])
		}
	}
	for i, I := range o.P.Fmap {
		for j, J := range o.P.Fmap {
			Kb.Put(I, J, o.P.Kff[i][j])
		}
	}
	for i, I := range o.U.Umap {
		for j, J := range o.U.Umap {
			Kb.Put(I, J, o.U.K[i][j])
		}
	}
	return true
}
示例#2
0
文件: e_u.go 项目: PatrickSchm/gofem
// AddToKb adds element K to global Jacobian matrix Kb
func (o *ElemU) AddToKb(Kb *la.Triplet, sol *Solution, firstIt bool) (ok bool) {

	// zero K matrix
	la.MatFill(o.K, 0)

	// for each integration point
	dc := Global.DynCoefs
	ndim := Global.Ndim
	nverts := o.Shp.Nverts
	for idx, ip := range o.IpsElem {

		// interpolation functions, gradients and variables @ ip
		if !o.ipvars(idx, sol) {
			return
		}

		// check Jacobian
		if o.Shp.J < 0 {
			LogErrCond(true, "ElemU: eid=%d: Jacobian is negative = %g\n", o.Id(), o.Shp.J)
			return
		}

		// auxiliary
		coef := o.Shp.J * ip.W * o.Thickness
		S := o.Shp.S
		G := o.Shp.G

		// consistent tangent model matrix
		if LogErr(o.MdlSmall.CalcD(o.D, o.States[idx], firstIt), "AddToKb") {
			return
		}

		// add contribution to consistent tangent matrix
		if o.UseB {
			radius := 1.0
			if Global.Sim.Data.Axisym {
				radius = o.Shp.AxisymGetRadius(o.X)
				coef *= radius
			}
			IpBmatrix(o.B, ndim, nverts, G, radius, S)
			la.MatTrMulAdd3(o.K, coef, o.B, o.D, o.B) // K += coef * tr(B) * D * B
		} else {
			IpAddToKt(o.K, nverts, ndim, coef, G, o.D)
		}

		// dynamic term
		if !Global.Sim.Data.Steady {
			for m := 0; m < nverts; m++ {
				for i := 0; i < ndim; i++ {
					r := i + m*ndim
					for n := 0; n < nverts; n++ {
						c := i + n*ndim
						o.K[r][c] += coef * S[m] * S[n] * (o.Rho*dc.α1 + o.Cdam*dc.α4)
					}
				}
			}
		}
	}

	// add K to sparse matrix Kb
	for i, I := range o.Umap {
		for j, J := range o.Umap {
			Kb.Put(I, J, o.K[i][j])
		}
	}
	return true
}
示例#3
0
文件: e_u.go 项目: PaddySchmidt/gofem
// AddToKb adds element K to global Jacobian matrix Kb
func (o *ElemU) AddToKb(Kb *la.Triplet, sol *Solution, firstIt bool) (err error) {

	// zero K matrix
	la.MatFill(o.K, 0)

	// for each integration point
	nverts := o.Cell.Shp.Nverts
	for idx, ip := range o.IpsElem {

		// interpolation functions, gradients and variables @ ip
		err = o.ipvars(idx, sol)
		if err != nil {
			return
		}

		// check Jacobian
		if o.Cell.Shp.J < 0 {
			return chk.Err("ElemU: eid=%d: Jacobian is negative = %g\n", o.Id(), o.Cell.Shp.J)
		}

		// auxiliary
		coef := o.Cell.Shp.J * ip[3] * o.Thickness
		S := o.Cell.Shp.S
		G := o.Cell.Shp.G

		// consistent tangent model matrix
		err = o.MdlSmall.CalcD(o.D, o.States[idx], firstIt)
		if err != nil {
			return
		}

		// add contribution to consistent tangent matrix
		if o.UseB {
			radius := 1.0
			if sol.Axisym {
				radius = o.Cell.Shp.AxisymGetRadius(o.X)
				coef *= radius
			}
			IpBmatrix(o.B, o.Ndim, nverts, G, radius, S, sol.Axisym)
			la.MatTrMulAdd3(o.K, coef, o.B, o.D, o.B) // K += coef * tr(B) * D * B
		} else {
			IpAddToKt(o.K, nverts, o.Ndim, coef, G, o.D)
		}

		// dynamic term
		if !sol.Steady {
			α1 := sol.DynCfs.α1
			α4 := sol.DynCfs.α4
			for m := 0; m < nverts; m++ {
				for i := 0; i < o.Ndim; i++ {
					r := i + m*o.Ndim
					for n := 0; n < nverts; n++ {
						c := i + n*o.Ndim
						o.K[r][c] += coef * S[m] * S[n] * (o.Rho*α1 + o.Cdam*α4)
					}
				}
			}
		}
	}

	// add Ks to sparse matrix Kb
	switch {

	case o.HasContact:
		err = o.contact_add_to_jac(Kb, sol)

	case o.Xfem:
		err = o.xfem_add_to_jac(Kb, sol)

	default:
		for i, I := range o.Umap {
			for j, J := range o.Umap {
				Kb.Put(I, J, o.K[i][j])
			}
		}
	}
	return
}