// CalcDifficulty is the difficulty adjustment algorithm. It returns // the difficulty that a new block should have when created at time // given the parent block's time and difficulty. func CalcDifficulty(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int { if params.IsHomestead(new(big.Int).Add(parentNumber, common.Big1)) { return calcDifficultyHomestead(time, parentTime, parentNumber, parentDiff) } else { return calcDifficultyFrontier(time, parentTime, parentNumber, parentDiff) } }
func (jt vmJumpTable) init(blockNumber *big.Int) { // when initialising a new VM execution we must first check the homestead // changes. if params.IsHomestead(blockNumber) { jumpTable[DELEGATECALL] = jumpPtr{opDelegateCall, true} } else { jumpTable[DELEGATECALL] = jumpPtr{nil, false} } }
func (self *StateTransition) transitionDb() (ret []byte, usedGas *big.Int, err error) { if err = self.preCheck(); err != nil { return } msg := self.msg sender, _ := self.from() // err checked in preCheck homestead := params.IsHomestead(self.env.BlockNumber()) contractCreation := MessageCreatesContract(msg) // Pay intrinsic gas if err = self.useGas(IntrinsicGas(self.data, contractCreation, homestead)); err != nil { return nil, nil, InvalidTxError(err) } vmenv := self.env //var addr common.Address if contractCreation { ret, _, err = vmenv.Create(sender, self.data, self.gas, self.gasPrice, self.value) if homestead && err == vm.CodeStoreOutOfGasError { self.gas = Big0 } if err != nil { ret = nil glog.V(logger.Core).Infoln("VM create err:", err) } } else { // Increment the nonce for the next transaction self.state.SetNonce(sender.Address(), self.state.GetNonce(sender.Address())+1) ret, err = vmenv.Call(sender, self.to().Address(), self.data, self.gas, self.gasPrice, self.value) if err != nil { glog.V(logger.Core).Infoln("VM call err:", err) } } if err != nil && IsValueTransferErr(err) { return nil, nil, InvalidTxError(err) } // We aren't interested in errors here. Errors returned by the VM are non-consensus errors and therefor shouldn't bubble up if err != nil { err = nil } if vm.Debug { vm.StdErrFormat(vmenv.StructLogs()) } self.refundGas() self.state.AddBalance(self.env.Coinbase(), new(big.Int).Mul(self.gasUsed(), self.gasPrice)) return ret, self.gasUsed(), err }
func (self *StateTransition) from() (vm.Account, error) { var ( f common.Address err error ) if params.IsHomestead(self.env.BlockNumber()) { f, err = self.msg.From() } else { f, err = self.msg.FromFrontier() } if err != nil { return nil, err } if !self.state.Exist(f) { return self.state.CreateAccount(f), nil } return self.state.GetAccount(f), nil }
func opCreate(instr instruction, pc *uint64, env Environment, contract *Contract, memory *Memory, stack *stack) { var ( value = stack.pop() offset, size = stack.pop(), stack.pop() input = memory.Get(offset.Int64(), size.Int64()) gas = new(big.Int).Set(contract.Gas) ) contract.UseGas(contract.Gas) _, addr, suberr := env.Create(contract, input, gas, contract.Price, value) // Push item on the stack based on the returned error. If the ruleset is // homestead we must check for CodeStoreOutOfGasError (homestead only // rule) and treat as an error, if the ruleset is frontier we must // ignore this error and pretend the operation was successful. if params.IsHomestead(env.BlockNumber()) && suberr == CodeStoreOutOfGasError { stack.push(new(big.Int)) } else if suberr != nil && suberr != CodeStoreOutOfGasError { stack.push(new(big.Int)) } else { stack.push(addr.Big()) } }
func runProgram(program *Program, pcstart uint64, mem *Memory, stack *stack, env Environment, contract *Contract, input []byte) ([]byte, error) { contract.Input = input var ( pc uint64 = program.mapping[pcstart] instrCount = 0 ) if glog.V(logger.Debug) { glog.Infof("running JIT program %x\n", program.Id[:4]) tstart := time.Now() defer func() { glog.Infof("JIT program %x done. time: %v instrc: %v\n", program.Id[:4], time.Since(tstart), instrCount) }() } homestead := params.IsHomestead(env.BlockNumber()) for pc < uint64(len(program.instructions)) { instrCount++ instr := program.instructions[pc] if instr.Op() == DELEGATECALL && !homestead { return nil, fmt.Errorf("Invalid opcode 0x%x", instr.Op()) } ret, err := instr.do(program, &pc, env, contract, mem, stack) if err != nil { return nil, err } if instr.halts() { return ret, nil } } contract.Input = nil return nil, nil }
func (pool *TxPool) eventLoop() { // Track chain events. When a chain events occurs (new chain canon block) // we need to know the new state. The new state will help us determine // the nonces in the managed state for ev := range pool.events.Chan() { switch ev := ev.Data.(type) { case ChainHeadEvent: pool.mu.Lock() if ev.Block != nil && params.IsHomestead(ev.Block.Number()) { pool.homestead = true } pool.resetState() pool.mu.Unlock() case GasPriceChanged: pool.mu.Lock() pool.minGasPrice = ev.Price pool.mu.Unlock() case RemovedTransactionEvent: pool.AddTransactions(ev.Txs) } } }
func newJumpTable(blockNumber *big.Int) vmJumpTable { var jumpTable vmJumpTable // when initialising a new VM execution we must first check the homestead // changes. if params.IsHomestead(blockNumber) { jumpTable[DELEGATECALL] = jumpPtr{opDelegateCall, true} } jumpTable[ADD] = jumpPtr{opAdd, true} jumpTable[SUB] = jumpPtr{opSub, true} jumpTable[MUL] = jumpPtr{opMul, true} jumpTable[DIV] = jumpPtr{opDiv, true} jumpTable[SDIV] = jumpPtr{opSdiv, true} jumpTable[MOD] = jumpPtr{opMod, true} jumpTable[SMOD] = jumpPtr{opSmod, true} jumpTable[EXP] = jumpPtr{opExp, true} jumpTable[SIGNEXTEND] = jumpPtr{opSignExtend, true} jumpTable[NOT] = jumpPtr{opNot, true} jumpTable[LT] = jumpPtr{opLt, true} jumpTable[GT] = jumpPtr{opGt, true} jumpTable[SLT] = jumpPtr{opSlt, true} jumpTable[SGT] = jumpPtr{opSgt, true} jumpTable[EQ] = jumpPtr{opEq, true} jumpTable[ISZERO] = jumpPtr{opIszero, true} jumpTable[AND] = jumpPtr{opAnd, true} jumpTable[OR] = jumpPtr{opOr, true} jumpTable[XOR] = jumpPtr{opXor, true} jumpTable[BYTE] = jumpPtr{opByte, true} jumpTable[ADDMOD] = jumpPtr{opAddmod, true} jumpTable[MULMOD] = jumpPtr{opMulmod, true} jumpTable[SHA3] = jumpPtr{opSha3, true} jumpTable[ADDRESS] = jumpPtr{opAddress, true} jumpTable[BALANCE] = jumpPtr{opBalance, true} jumpTable[ORIGIN] = jumpPtr{opOrigin, true} jumpTable[CALLER] = jumpPtr{opCaller, true} jumpTable[CALLVALUE] = jumpPtr{opCallValue, true} jumpTable[CALLDATALOAD] = jumpPtr{opCalldataLoad, true} jumpTable[CALLDATASIZE] = jumpPtr{opCalldataSize, true} jumpTable[CALLDATACOPY] = jumpPtr{opCalldataCopy, true} jumpTable[CODESIZE] = jumpPtr{opCodeSize, true} jumpTable[EXTCODESIZE] = jumpPtr{opExtCodeSize, true} jumpTable[CODECOPY] = jumpPtr{opCodeCopy, true} jumpTable[EXTCODECOPY] = jumpPtr{opExtCodeCopy, true} jumpTable[GASPRICE] = jumpPtr{opGasprice, true} jumpTable[BLOCKHASH] = jumpPtr{opBlockhash, true} jumpTable[COINBASE] = jumpPtr{opCoinbase, true} jumpTable[TIMESTAMP] = jumpPtr{opTimestamp, true} jumpTable[NUMBER] = jumpPtr{opNumber, true} jumpTable[DIFFICULTY] = jumpPtr{opDifficulty, true} jumpTable[GASLIMIT] = jumpPtr{opGasLimit, true} jumpTable[POP] = jumpPtr{opPop, true} jumpTable[MLOAD] = jumpPtr{opMload, true} jumpTable[MSTORE] = jumpPtr{opMstore, true} jumpTable[MSTORE8] = jumpPtr{opMstore8, true} jumpTable[SLOAD] = jumpPtr{opSload, true} jumpTable[SSTORE] = jumpPtr{opSstore, true} jumpTable[JUMPDEST] = jumpPtr{opJumpdest, true} jumpTable[PC] = jumpPtr{nil, true} jumpTable[MSIZE] = jumpPtr{opMsize, true} jumpTable[GAS] = jumpPtr{opGas, true} jumpTable[CREATE] = jumpPtr{opCreate, true} jumpTable[CALL] = jumpPtr{opCall, true} jumpTable[CALLCODE] = jumpPtr{opCallCode, true} jumpTable[LOG0] = jumpPtr{makeLog(0), true} jumpTable[LOG1] = jumpPtr{makeLog(1), true} jumpTable[LOG2] = jumpPtr{makeLog(2), true} jumpTable[LOG3] = jumpPtr{makeLog(3), true} jumpTable[LOG4] = jumpPtr{makeLog(4), true} jumpTable[SWAP1] = jumpPtr{makeSwap(1), true} jumpTable[SWAP2] = jumpPtr{makeSwap(2), true} jumpTable[SWAP3] = jumpPtr{makeSwap(3), true} jumpTable[SWAP4] = jumpPtr{makeSwap(4), true} jumpTable[SWAP5] = jumpPtr{makeSwap(5), true} jumpTable[SWAP6] = jumpPtr{makeSwap(6), true} jumpTable[SWAP7] = jumpPtr{makeSwap(7), true} jumpTable[SWAP8] = jumpPtr{makeSwap(8), true} jumpTable[SWAP9] = jumpPtr{makeSwap(9), true} jumpTable[SWAP10] = jumpPtr{makeSwap(10), true} jumpTable[SWAP11] = jumpPtr{makeSwap(11), true} jumpTable[SWAP12] = jumpPtr{makeSwap(12), true} jumpTable[SWAP13] = jumpPtr{makeSwap(13), true} jumpTable[SWAP14] = jumpPtr{makeSwap(14), true} jumpTable[SWAP15] = jumpPtr{makeSwap(15), true} jumpTable[SWAP16] = jumpPtr{makeSwap(16), true} jumpTable[PUSH1] = jumpPtr{makePush(1, big.NewInt(1)), true} jumpTable[PUSH2] = jumpPtr{makePush(2, big.NewInt(2)), true} jumpTable[PUSH3] = jumpPtr{makePush(3, big.NewInt(3)), true} jumpTable[PUSH4] = jumpPtr{makePush(4, big.NewInt(4)), true} jumpTable[PUSH5] = jumpPtr{makePush(5, big.NewInt(5)), true} jumpTable[PUSH6] = jumpPtr{makePush(6, big.NewInt(6)), true} jumpTable[PUSH7] = jumpPtr{makePush(7, big.NewInt(7)), true} jumpTable[PUSH8] = jumpPtr{makePush(8, big.NewInt(8)), true} jumpTable[PUSH9] = jumpPtr{makePush(9, big.NewInt(9)), true} jumpTable[PUSH10] = jumpPtr{makePush(10, big.NewInt(10)), true} jumpTable[PUSH11] = jumpPtr{makePush(11, big.NewInt(11)), true} jumpTable[PUSH12] = jumpPtr{makePush(12, big.NewInt(12)), true} jumpTable[PUSH13] = jumpPtr{makePush(13, big.NewInt(13)), true} jumpTable[PUSH14] = jumpPtr{makePush(14, big.NewInt(14)), true} jumpTable[PUSH15] = jumpPtr{makePush(15, big.NewInt(15)), true} jumpTable[PUSH16] = jumpPtr{makePush(16, big.NewInt(16)), true} jumpTable[PUSH17] = jumpPtr{makePush(17, big.NewInt(17)), true} jumpTable[PUSH18] = jumpPtr{makePush(18, big.NewInt(18)), true} jumpTable[PUSH19] = jumpPtr{makePush(19, big.NewInt(19)), true} jumpTable[PUSH20] = jumpPtr{makePush(20, big.NewInt(20)), true} jumpTable[PUSH21] = jumpPtr{makePush(21, big.NewInt(21)), true} jumpTable[PUSH22] = jumpPtr{makePush(22, big.NewInt(22)), true} jumpTable[PUSH23] = jumpPtr{makePush(23, big.NewInt(23)), true} jumpTable[PUSH24] = jumpPtr{makePush(24, big.NewInt(24)), true} jumpTable[PUSH25] = jumpPtr{makePush(25, big.NewInt(25)), true} jumpTable[PUSH26] = jumpPtr{makePush(26, big.NewInt(26)), true} jumpTable[PUSH27] = jumpPtr{makePush(27, big.NewInt(27)), true} jumpTable[PUSH28] = jumpPtr{makePush(28, big.NewInt(28)), true} jumpTable[PUSH29] = jumpPtr{makePush(29, big.NewInt(29)), true} jumpTable[PUSH30] = jumpPtr{makePush(30, big.NewInt(30)), true} jumpTable[PUSH31] = jumpPtr{makePush(31, big.NewInt(31)), true} jumpTable[PUSH32] = jumpPtr{makePush(32, big.NewInt(32)), true} jumpTable[DUP1] = jumpPtr{makeDup(1), true} jumpTable[DUP2] = jumpPtr{makeDup(2), true} jumpTable[DUP3] = jumpPtr{makeDup(3), true} jumpTable[DUP4] = jumpPtr{makeDup(4), true} jumpTable[DUP5] = jumpPtr{makeDup(5), true} jumpTable[DUP6] = jumpPtr{makeDup(6), true} jumpTable[DUP7] = jumpPtr{makeDup(7), true} jumpTable[DUP8] = jumpPtr{makeDup(8), true} jumpTable[DUP9] = jumpPtr{makeDup(9), true} jumpTable[DUP10] = jumpPtr{makeDup(10), true} jumpTable[DUP11] = jumpPtr{makeDup(11), true} jumpTable[DUP12] = jumpPtr{makeDup(12), true} jumpTable[DUP13] = jumpPtr{makeDup(13), true} jumpTable[DUP14] = jumpPtr{makeDup(14), true} jumpTable[DUP15] = jumpPtr{makeDup(15), true} jumpTable[DUP16] = jumpPtr{makeDup(16), true} jumpTable[RETURN] = jumpPtr{nil, true} jumpTable[SUICIDE] = jumpPtr{nil, true} jumpTable[JUMP] = jumpPtr{nil, true} jumpTable[JUMPI] = jumpPtr{nil, true} jumpTable[STOP] = jumpPtr{nil, true} return jumpTable }
func exec(env vm.Environment, caller vm.ContractRef, address, codeAddr *common.Address, input, code []byte, gas, gasPrice, value *big.Int) (ret []byte, addr common.Address, err error) { evm := env.Vm() // Depth check execution. Fail if we're trying to execute above the // limit. if env.Depth() > int(params.CallCreateDepth.Int64()) { caller.ReturnGas(gas, gasPrice) return nil, common.Address{}, vm.DepthError } if !env.CanTransfer(caller.Address(), value) { caller.ReturnGas(gas, gasPrice) return nil, common.Address{}, ValueTransferErr("insufficient funds to transfer value. Req %v, has %v", value, env.Db().GetBalance(caller.Address())) } var createAccount bool if address == nil { // Create a new account on the state nonce := env.Db().GetNonce(caller.Address()) env.Db().SetNonce(caller.Address(), nonce+1) addr = crypto.CreateAddress(caller.Address(), nonce) address = &addr createAccount = true } snapshotPreTransfer := env.MakeSnapshot() var ( from = env.Db().GetAccount(caller.Address()) to vm.Account ) if createAccount { to = env.Db().CreateAccount(*address) } else { if !env.Db().Exist(*address) { to = env.Db().CreateAccount(*address) } else { to = env.Db().GetAccount(*address) } } env.Transfer(from, to, value) // initialise a new contract and set the code that is to be used by the // EVM. The contract is a scoped environment for this execution context // only. contract := vm.NewContract(caller, to, value, gas, gasPrice) contract.SetCallCode(codeAddr, code) defer contract.Finalise() ret, err = evm.Run(contract, input) // if the contract creation ran successfully and no errors were returned // calculate the gas required to store the code. If the code could not // be stored due to not enough gas set an error and let it be handled // by the error checking condition below. if err == nil && createAccount { dataGas := big.NewInt(int64(len(ret))) dataGas.Mul(dataGas, params.CreateDataGas) if contract.UseGas(dataGas) { env.Db().SetCode(*address, ret) } else { err = vm.CodeStoreOutOfGasError } } // When an error was returned by the EVM or when setting the creation code // above we revert to the snapshot and consume any gas remaining. Additionally // when we're in homestead this also counts for code storage gas errors. if err != nil && (params.IsHomestead(env.BlockNumber()) || err != vm.CodeStoreOutOfGasError) { contract.UseGas(contract.Gas) env.SetSnapshot(snapshotPreTransfer) } return ret, addr, err }