func testGetReceipt(t *testing.T, protocol int) { // Define three accounts to simulate transactions with acc1Key, _ := crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a") acc2Key, _ := crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee") acc1Addr := crypto.PubkeyToAddress(acc1Key.PublicKey) acc2Addr := crypto.PubkeyToAddress(acc2Key.PublicKey) // Create a chain generator with some simple transactions (blatantly stolen from @fjl/chain_makerts_test) generator := func(i int, block *core.BlockGen) { switch i { case 0: // In block 1, the test bank sends account #1 some ether. tx, _ := types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(10000), params.TxGas, nil, nil).SignECDSA(testBankKey) block.AddTx(tx) case 1: // In block 2, the test bank sends some more ether to account #1. // acc1Addr passes it on to account #2. tx1, _ := types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(1000), params.TxGas, nil, nil).SignECDSA(testBankKey) tx2, _ := types.NewTransaction(block.TxNonce(acc1Addr), acc2Addr, big.NewInt(1000), params.TxGas, nil, nil).SignECDSA(acc1Key) block.AddTx(tx1) block.AddTx(tx2) case 2: // Block 3 is empty but was mined by account #2. block.SetCoinbase(acc2Addr) block.SetExtra([]byte("yeehaw")) case 3: // Block 4 includes blocks 2 and 3 as uncle headers (with modified extra data). b2 := block.PrevBlock(1).Header() b2.Extra = []byte("foo") block.AddUncle(b2) b3 := block.PrevBlock(2).Header() b3.Extra = []byte("foo") block.AddUncle(b3) } } // Assemble the test environment pm := newTestProtocolManagerMust(t, false, 4, generator, nil) peer, _ := newTestPeer("peer", protocol, pm, true) defer peer.close() // Collect the hashes to request, and the response to expect hashes, receipts := []common.Hash{}, []types.Receipts{} for i := uint64(0); i <= pm.blockchain.CurrentBlock().NumberU64(); i++ { block := pm.blockchain.GetBlockByNumber(i) hashes = append(hashes, block.Hash()) receipts = append(receipts, core.GetBlockReceipts(pm.chaindb, block.Hash())) } // Send the hash request and verify the response p2p.Send(peer.app, 0x0f, hashes) if err := p2p.ExpectMsg(peer.app, 0x10, receipts); err != nil { t.Errorf("receipts mismatch: %v", err) } }
func testREPL(t *testing.T, config func(*exp.Config)) (string, *testjethre, *exp.Expanse) { tmp, err := ioutil.TempDir("", "gexp-test") if err != nil { t.Fatal(err) } db, _ := ethdb.NewMemDatabase() core.WriteGenesisBlockForTesting(db, core.GenesisAccount{common.HexToAddress(testAddress), common.String2Big(testBalance)}) ks := crypto.NewKeyStorePlain(filepath.Join(tmp, "keystore")) am := accounts.NewManager(ks) conf := &exp.Config{ NodeKey: testNodeKey, DataDir: tmp, AccountManager: am, MaxPeers: 0, Name: "test", DocRoot: "/", SolcPath: testSolcPath, PowTest: true, NewDB: func(path string) (ethdb.Database, error) { return db, nil }, } if config != nil { config(conf) } expanse, err := exp.New(conf) if err != nil { t.Fatal("%v", err) } keyb, err := crypto.HexToECDSA(testKey) if err != nil { t.Fatal(err) } key := crypto.NewKeyFromECDSA(keyb) err = ks.StoreKey(key, "") if err != nil { t.Fatal(err) } err = am.Unlock(key.Address, "") if err != nil { t.Fatal(err) } assetPath := filepath.Join(os.Getenv("GOPATH"), "src", "github.com", "expanse", "go-expanse", "cmd", "mist", "assets", "ext") client := comms.NewInProcClient(codec.JSON) tf := &testjethre{client: expanse.HTTPClient()} repl := newJSRE(expanse, assetPath, "", client, false, tf) tf.jsre = repl return tmp, tf, expanse }
func main() { var ( listenAddr = flag.String("addr", ":42787", "listen address") genKey = flag.String("genkey", "", "generate a node key and quit") nodeKeyFile = flag.String("nodekey", "", "private key filename") nodeKeyHex = flag.String("nodekeyhex", "", "private key as hex (for testing)") natdesc = flag.String("nat", "none", "port mapping mechanism (any|none|upnp|pmp|extip:<IP>)") nodeKey *ecdsa.PrivateKey err error ) flag.Var(glog.GetVerbosity(), "verbosity", "log verbosity (0-9)") flag.Var(glog.GetVModule(), "vmodule", "log verbosity pattern") glog.SetToStderr(true) flag.Parse() if *genKey != "" { key, err := crypto.GenerateKey() if err != nil { utils.Fatalf("could not generate key: %v", err) } if err := crypto.SaveECDSA(*genKey, key); err != nil { utils.Fatalf("%v", err) } os.Exit(0) } natm, err := nat.Parse(*natdesc) if err != nil { utils.Fatalf("-nat: %v", err) } switch { case *nodeKeyFile == "" && *nodeKeyHex == "": utils.Fatalf("Use -nodekey or -nodekeyhex to specify a private key") case *nodeKeyFile != "" && *nodeKeyHex != "": utils.Fatalf("Options -nodekey and -nodekeyhex are mutually exclusive") case *nodeKeyFile != "": if nodeKey, err = crypto.LoadECDSA(*nodeKeyFile); err != nil { utils.Fatalf("-nodekey: %v", err) } case *nodeKeyHex != "": if nodeKey, err = crypto.HexToECDSA(*nodeKeyHex); err != nil { utils.Fatalf("-nodekeyhex: %v", err) } } if _, err := discover.ListenUDP(nodeKey, *listenAddr, natm, ""); err != nil { utils.Fatalf("%v", err) } select {} }
// MakeSystemNode configures a protocol stack for the RPC tests based on a given // keystore path and initial pre-state. func MakeSystemNode(keydir string, privkey string, test *tests.BlockTest) (*node.Node, error) { // Create a networkless protocol stack stack, err := node.New(&node.Config{ IPCPath: node.DefaultIPCEndpoint(), HTTPHost: common.DefaultHTTPHost, HTTPPort: common.DefaultHTTPPort, HTTPModules: []string{"admin", "db", "exp", "debug", "miner", "net", "shh", "txpool", "personal", "web3"}, WSHost: common.DefaultWSHost, WSPort: common.DefaultWSPort, WSModules: []string{"admin", "db", "exp", "debug", "miner", "net", "shh", "txpool", "personal", "web3"}, NoDiscovery: true, }) if err != nil { return nil, err } // Create the keystore and inject an unlocked account if requested accman := accounts.NewPlaintextManager(keydir) if len(privkey) > 0 { key, err := crypto.HexToECDSA(privkey) if err != nil { return nil, err } a, err := accman.ImportECDSA(key, "") if err != nil { return nil, err } if err := accman.Unlock(a, ""); err != nil { return nil, err } } // Initialize and register the Expanse protocol db, _ := ethdb.NewMemDatabase() if _, err := test.InsertPreState(db); err != nil { return nil, err } ethConf := &exp.Config{ TestGenesisState: db, TestGenesisBlock: test.Genesis, ChainConfig: &core.ChainConfig{HomesteadBlock: params.MainNetHomesteadBlock}, AccountManager: accman, } if err := stack.Register(func(ctx *node.ServiceContext) (node.Service, error) { return exp.New(ctx, ethConf) }); err != nil { return nil, err } // Initialize and register the Whisper protocol if err := stack.Register(func(*node.ServiceContext) (node.Service, error) { return whisper.New(), nil }); err != nil { return nil, err } return stack, nil }
// MakeNodeKey creates a node key from set command line flags. func MakeNodeKey(ctx *cli.Context) (key *ecdsa.PrivateKey) { hex, file := ctx.GlobalString(NodeKeyHexFlag.Name), ctx.GlobalString(NodeKeyFileFlag.Name) var err error switch { case file != "" && hex != "": Fatalf("Options %q and %q are mutually exclusive", NodeKeyFileFlag.Name, NodeKeyHexFlag.Name) case file != "": if key, err = crypto.LoadECDSA(file); err != nil { Fatalf("Option %q: %v", NodeKeyFileFlag.Name, err) } case hex != "": if key, err = crypto.HexToECDSA(hex); err != nil { Fatalf("Option %q: %v", NodeKeyHexFlag.Name, err) } } return key }
func testEth(t *testing.T) (expanse *exp.Expanse, err error) { tmp, err := ioutil.TempDir("", "natspec-test") if err != nil { t.Fatal(err) } db, _ := ethdb.NewMemDatabase() addr := common.HexToAddress(testAddress) core.WriteGenesisBlockForTesting(db, core.GenesisAccount{addr, common.String2Big(testBalance)}) ks := crypto.NewKeyStorePassphrase(filepath.Join(tmp, "keystore"), crypto.LightScryptN, crypto.LightScryptP) am := accounts.NewManager(ks) keyb, err := crypto.HexToECDSA(testKey) if err != nil { t.Fatal(err) } key := crypto.NewKeyFromECDSA(keyb) err = ks.StoreKey(key, "") if err != nil { t.Fatal(err) } err = am.Unlock(key.Address, "") if err != nil { t.Fatal(err) } // only use minimalistic stack with no networking return exp.New(&exp.Config{ DataDir: tmp, AccountManager: am, Etherbase: common.HexToAddress(testAddress), MaxPeers: 0, PowTest: true, NewDB: func(path string) (ethdb.Database, error) { return db, nil }, GpoMinGasPrice: common.Big1, GpobaseCorrectionFactor: 1, GpoMaxGasPrice: common.Big1, }) }
func TestForwardCompatibility(t *testing.T) { testkey, _ := crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") wantNodeID := PubkeyID(&testkey.PublicKey) for _, test := range testPackets { input, err := hex.DecodeString(test.input) if err != nil { t.Fatalf("invalid hex: %s", test.input) } packet, nodeid, _, err := decodePacket(input) if err != nil { t.Errorf("did not accept packet %s\n%v", test.input, err) continue } if !reflect.DeepEqual(packet, test.wantPacket) { t.Errorf("got %s\nwant %s", spew.Sdump(packet), spew.Sdump(test.wantPacket)) } if nodeid != wantNodeID { t.Errorf("got id %v\nwant id %v", nodeid, wantNodeID) } } }
func TestHandshakeForwardCompatibility(t *testing.T) { var ( keyA, _ = crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee") keyB, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") pubA = crypto.FromECDSAPub(&keyA.PublicKey)[1:] pubB = crypto.FromECDSAPub(&keyB.PublicKey)[1:] ephA, _ = crypto.HexToECDSA("869d6ecf5211f1cc60418a13b9d870b22959d0c16f02bec714c960dd2298a32d") ephB, _ = crypto.HexToECDSA("e238eb8e04fee6511ab04c6dd3c89ce097b11f25d584863ac2b6d5b35b1847e4") ephPubA = crypto.FromECDSAPub(&ephA.PublicKey)[1:] ephPubB = crypto.FromECDSAPub(&ephB.PublicKey)[1:] nonceA = unhex("7e968bba13b6c50e2c4cd7f241cc0d64d1ac25c7f5952df231ac6a2bda8ee5d6") nonceB = unhex("559aead08264d5795d3909718cdd05abd49572e84fe55590eef31a88a08fdffd") _, _, _, _ = pubA, pubB, ephPubA, ephPubB authSignature = unhex("299ca6acfd35e3d72d8ba3d1e2b60b5561d5af5218eb5bc182045769eb4226910a301acae3b369fffc4a4899d6b02531e89fd4fe36a2cf0d93607ba470b50f7800") _ = authSignature ) makeAuth := func(test handshakeAuthTest) *authMsgV4 { msg := &authMsgV4{Version: test.wantVersion, Rest: test.wantRest, gotPlain: test.isPlain} copy(msg.Signature[:], authSignature) copy(msg.InitiatorPubkey[:], pubA) copy(msg.Nonce[:], nonceA) return msg } makeAck := func(test handshakeAckTest) *authRespV4 { msg := &authRespV4{Version: test.wantVersion, Rest: test.wantRest} copy(msg.RandomPubkey[:], ephPubB) copy(msg.Nonce[:], nonceB) return msg } // check auth msg parsing for _, test := range eip8HandshakeAuthTests { r := bytes.NewReader(unhex(test.input)) msg := new(authMsgV4) ciphertext, err := readHandshakeMsg(msg, encAuthMsgLen, keyB, r) if err != nil { t.Errorf("error for input %x:\n %v", unhex(test.input), err) continue } if !bytes.Equal(ciphertext, unhex(test.input)) { t.Errorf("wrong ciphertext for input %x:\n %x", unhex(test.input), ciphertext) } want := makeAuth(test) if !reflect.DeepEqual(msg, want) { t.Errorf("wrong msg for input %x:\ngot %s\nwant %s", unhex(test.input), spew.Sdump(msg), spew.Sdump(want)) } } // check auth resp parsing for _, test := range eip8HandshakeRespTests { input := unhex(test.input) r := bytes.NewReader(input) msg := new(authRespV4) ciphertext, err := readHandshakeMsg(msg, encAuthRespLen, keyA, r) if err != nil { t.Errorf("error for input %x:\n %v", input, err) continue } if !bytes.Equal(ciphertext, input) { t.Errorf("wrong ciphertext for input %x:\n %x", input, err) } want := makeAck(test) if !reflect.DeepEqual(msg, want) { t.Errorf("wrong msg for input %x:\ngot %s\nwant %s", input, spew.Sdump(msg), spew.Sdump(want)) } } // check derivation for (Auth₂, Ack₂) on recipient side var ( hs = &encHandshake{ initiator: false, respNonce: nonceB, randomPrivKey: ecies.ImportECDSA(ephB), } authCiphertext = unhex(eip8HandshakeAuthTests[1].input) authRespCiphertext = unhex(eip8HandshakeRespTests[1].input) authMsg = makeAuth(eip8HandshakeAuthTests[1]) wantAES = unhex("80e8632c05fed6fc2a13b0f8d31a3cf645366239170ea067065aba8e28bac487") wantMAC = unhex("2ea74ec5dae199227dff1af715362700e989d889d7a493cb0639691efb8e5f98") wantFooIngressHash = unhex("0c7ec6340062cc46f5e9f1e3cf86f8c8c403c5a0964f5df0ebd34a75ddc86db5") ) if err := hs.handleAuthMsg(authMsg, keyB); err != nil { t.Fatalf("handleAuthMsg: %v", err) } derived, err := hs.secrets(authCiphertext, authRespCiphertext) if err != nil { t.Fatalf("secrets: %v", err) } if !bytes.Equal(derived.AES, wantAES) { t.Errorf("aes-secret mismatch:\ngot %x\nwant %x", derived.AES, wantAES) } if !bytes.Equal(derived.MAC, wantMAC) { t.Errorf("mac-secret mismatch:\ngot %x\nwant %x", derived.MAC, wantMAC) } io.WriteString(derived.IngressMAC, "foo") fooIngressHash := derived.IngressMAC.Sum(nil) if !bytes.Equal(fooIngressHash, wantFooIngressHash) { t.Errorf("ingress-mac('foo') mismatch:\ngot %x\nwant %x", fooIngressHash, wantFooIngressHash) } }
func BenchmarkInsertChain_ring200_memdb(b *testing.B) { benchInsertChain(b, false, genTxRing(200)) } func BenchmarkInsertChain_ring200_diskdb(b *testing.B) { benchInsertChain(b, true, genTxRing(200)) } func BenchmarkInsertChain_ring1000_memdb(b *testing.B) { benchInsertChain(b, false, genTxRing(1000)) } func BenchmarkInsertChain_ring1000_diskdb(b *testing.B) { benchInsertChain(b, true, genTxRing(1000)) } var ( // This is the content of the genesis block used by the benchmarks. benchRootKey, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") benchRootAddr = crypto.PubkeyToAddress(benchRootKey.PublicKey) benchRootFunds = common.BigPow(2, 100) ) // genValueTx returns a block generator that includes a single // value-transfer transaction with n bytes of extra data in each // block. func genValueTx(nbytes int) func(int, *BlockGen) { return func(i int, gen *BlockGen) { toaddr := common.Address{} data := make([]byte, nbytes) gas := IntrinsicGas(data) tx, _ := types.NewTransaction(gen.TxNonce(benchRootAddr), toaddr, big.NewInt(1), gas, nil, data).SignECDSA(benchRootKey) gen.AddTx(tx) }
func TestMipmapChain(t *testing.T) { dir, err := ioutil.TempDir("", "mipmap") if err != nil { t.Fatal(err) } defer os.RemoveAll(dir) var ( db, _ = ethdb.NewLDBDatabase(dir, 16) key1, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") addr = crypto.PubkeyToAddress(key1.PublicKey) addr2 = common.BytesToAddress([]byte("jeff")) hash1 = common.BytesToHash([]byte("topic1")) ) defer db.Close() genesis := WriteGenesisBlockForTesting(db, GenesisAccount{addr, big.NewInt(1000000)}) chain, receipts := GenerateChain(genesis, db, 1010, func(i int, gen *BlockGen) { var receipts types.Receipts switch i { case 1: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{ &vm.Log{ Address: addr, Topics: []common.Hash{hash1}, }, } gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} case 1000: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{&vm.Log{Address: addr2}} gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} } // store the receipts err := WriteReceipts(db, receipts) if err != nil { t.Fatal(err) } WriteMipmapBloom(db, uint64(i+1), receipts) }) for i, block := range chain { WriteBlock(db, block) if err := WriteCanonicalHash(db, block.Hash(), block.NumberU64()); err != nil { t.Fatalf("failed to insert block number: %v", err) } if err := WriteHeadBlockHash(db, block.Hash()); err != nil { t.Fatalf("failed to insert block number: %v", err) } if err := WriteBlockReceipts(db, block.Hash(), receipts[i]); err != nil { t.Fatal("error writing block receipts:", err) } } bloom := GetMipmapBloom(db, 0, 1000) if bloom.TestBytes(addr2[:]) { t.Error("address was included in bloom and should not have") } }
func ExampleGenerateChain() { params.MinGasLimit = big.NewInt(125000) // Minimum the gas limit may ever be. params.GenesisGasLimit = big.NewInt(3141592) // Gas limit of the Genesis block. var ( key1, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") key2, _ = crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a") key3, _ = crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee") addr1 = crypto.PubkeyToAddress(key1.PublicKey) addr2 = crypto.PubkeyToAddress(key2.PublicKey) addr3 = crypto.PubkeyToAddress(key3.PublicKey) db, _ = ethdb.NewMemDatabase() ) // Ensure that key1 has some funds in the genesis block. genesis := WriteGenesisBlockForTesting(db, GenesisAccount{addr1, big.NewInt(1000000)}) // This call generates a chain of 5 blocks. The function runs for // each block and adds different features to gen based on the // block index. chain, _ := GenerateChain(genesis, db, 5, func(i int, gen *BlockGen) { switch i { case 0: // In block 1, addr1 sends addr2 some expanse. tx, _ := types.NewTransaction(gen.TxNonce(addr1), addr2, big.NewInt(10000), params.TxGas, nil, nil).SignECDSA(key1) gen.AddTx(tx) case 1: // In block 2, addr1 sends some more expanse to addr2. // addr2 passes it on to addr3. tx1, _ := types.NewTransaction(gen.TxNonce(addr1), addr2, big.NewInt(1000), params.TxGas, nil, nil).SignECDSA(key1) tx2, _ := types.NewTransaction(gen.TxNonce(addr2), addr3, big.NewInt(1000), params.TxGas, nil, nil).SignECDSA(key2) gen.AddTx(tx1) gen.AddTx(tx2) case 2: // Block 3 is empty but was mined by addr3. gen.SetCoinbase(addr3) gen.SetExtra([]byte("yeehaw")) case 3: // Block 4 includes blocks 2 and 3 as uncle headers (with modified extra data). b2 := gen.PrevBlock(1).Header() b2.Extra = []byte("foo") gen.AddUncle(b2) b3 := gen.PrevBlock(2).Header() b3.Extra = []byte("foo") gen.AddUncle(b3) } }) // Import the chain. This runs all block validation rules. evmux := &event.TypeMux{} blockchain, _ := NewBlockChain(db, FakePow{}, evmux) if i, err := blockchain.InsertChain(chain); err != nil { fmt.Printf("insert error (block %d): %v\n", i, err) return } state, _ := blockchain.State() fmt.Printf("last block: #%d\n", blockchain.CurrentBlock().Number()) fmt.Println("balance of addr1:", state.GetBalance(addr1)) fmt.Println("balance of addr2:", state.GetBalance(addr2)) fmt.Println("balance of addr3:", state.GetBalance(addr3)) // Output: // last block: #5 // balance of addr1: 989000 // balance of addr2: 10000 // balance of addr3: 19687500000000001000 }
func testGetNodeData(t *testing.T, protocol int) { // Define three accounts to simulate transactions with acc1Key, _ := crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a") acc2Key, _ := crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee") acc1Addr := crypto.PubkeyToAddress(acc1Key.PublicKey) acc2Addr := crypto.PubkeyToAddress(acc2Key.PublicKey) // Create a chain generator with some simple transactions (blatantly stolen from @fjl/chain_makerts_test) generator := func(i int, block *core.BlockGen) { switch i { case 0: // In block 1, the test bank sends account #1 some ether. tx, _ := types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(10000), params.TxGas, nil, nil).SignECDSA(testBankKey) block.AddTx(tx) case 1: // In block 2, the test bank sends some more ether to account #1. // acc1Addr passes it on to account #2. tx1, _ := types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(1000), params.TxGas, nil, nil).SignECDSA(testBankKey) tx2, _ := types.NewTransaction(block.TxNonce(acc1Addr), acc2Addr, big.NewInt(1000), params.TxGas, nil, nil).SignECDSA(acc1Key) block.AddTx(tx1) block.AddTx(tx2) case 2: // Block 3 is empty but was mined by account #2. block.SetCoinbase(acc2Addr) block.SetExtra([]byte("yeehaw")) case 3: // Block 4 includes blocks 2 and 3 as uncle headers (with modified extra data). b2 := block.PrevBlock(1).Header() b2.Extra = []byte("foo") block.AddUncle(b2) b3 := block.PrevBlock(2).Header() b3.Extra = []byte("foo") block.AddUncle(b3) } } // Assemble the test environment pm := newTestProtocolManagerMust(t, false, 4, generator, nil) peer, _ := newTestPeer("peer", protocol, pm, true) defer peer.close() // Fetch for now the entire chain db hashes := []common.Hash{} for _, key := range pm.chaindb.(*ethdb.MemDatabase).Keys() { if len(key) == len(common.Hash{}) { hashes = append(hashes, common.BytesToHash(key)) } } p2p.Send(peer.app, 0x0d, hashes) msg, err := peer.app.ReadMsg() if err != nil { t.Fatalf("failed to read node data response: %v", err) } if msg.Code != 0x0e { t.Fatalf("response packet code mismatch: have %x, want %x", msg.Code, 0x0c) } var data [][]byte if err := msg.Decode(&data); err != nil { t.Fatalf("failed to decode response node data: %v", err) } // Verify that all hashes correspond to the requested data, and reconstruct a state tree for i, want := range hashes { if hash := crypto.Sha3Hash(data[i]); hash != want { fmt.Errorf("data hash mismatch: have %x, want %x", hash, want) } } statedb, _ := ethdb.NewMemDatabase() for i := 0; i < len(data); i++ { statedb.Put(hashes[i].Bytes(), data[i]) } accounts := []common.Address{testBankAddress, acc1Addr, acc2Addr} for i := uint64(0); i <= pm.blockchain.CurrentBlock().NumberU64(); i++ { trie, _ := state.New(pm.blockchain.GetBlockByNumber(i).Root(), statedb) for j, acc := range accounts { state, _ := pm.blockchain.State() bw := state.GetBalance(acc) bh := trie.GetBalance(acc) if (bw != nil && bh == nil) || (bw == nil && bh != nil) { t.Errorf("test %d, account %d: balance mismatch: have %v, want %v", i, j, bh, bw) } if bw != nil && bh != nil && bw.Cmp(bw) != 0 { t.Errorf("test %d, account %d: balance mismatch: have %v, want %v", i, j, bh, bw) } } } }
func BenchmarkMipmaps(b *testing.B) { dir, err := ioutil.TempDir("", "mipmap") if err != nil { b.Fatal(err) } defer os.RemoveAll(dir) var ( db, _ = ethdb.NewLDBDatabase(dir, 0, 0) key1, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") addr1 = crypto.PubkeyToAddress(key1.PublicKey) addr2 = common.BytesToAddress([]byte("jeff")) addr3 = common.BytesToAddress([]byte("expanse")) addr4 = common.BytesToAddress([]byte("random addresses please")) ) defer db.Close() genesis := core.WriteGenesisBlockForTesting(db, core.GenesisAccount{Address: addr1, Balance: big.NewInt(1000000)}) chain, receipts := core.GenerateChain(nil, genesis, db, 100010, func(i int, gen *core.BlockGen) { var receipts types.Receipts switch i { case 2403: receipt := makeReceipt(addr1) receipts = types.Receipts{receipt} gen.AddUncheckedReceipt(receipt) case 1034: receipt := makeReceipt(addr2) receipts = types.Receipts{receipt} gen.AddUncheckedReceipt(receipt) case 34: receipt := makeReceipt(addr3) receipts = types.Receipts{receipt} gen.AddUncheckedReceipt(receipt) case 99999: receipt := makeReceipt(addr4) receipts = types.Receipts{receipt} gen.AddUncheckedReceipt(receipt) } // store the receipts err := core.WriteReceipts(db, receipts) if err != nil { b.Fatal(err) } core.WriteMipmapBloom(db, uint64(i+1), receipts) }) for i, block := range chain { core.WriteBlock(db, block) if err := core.WriteCanonicalHash(db, block.Hash(), block.NumberU64()); err != nil { b.Fatalf("failed to insert block number: %v", err) } if err := core.WriteHeadBlockHash(db, block.Hash()); err != nil { b.Fatalf("failed to insert block number: %v", err) } if err := core.WriteBlockReceipts(db, block.Hash(), receipts[i]); err != nil { b.Fatal("error writing block receipts:", err) } } b.ResetTimer() filter := New(db) filter.SetAddresses([]common.Address{addr1, addr2, addr3, addr4}) filter.SetBeginBlock(0) filter.SetEndBlock(-1) for i := 0; i < b.N; i++ { logs := filter.Find() if len(logs) != 4 { b.Fatal("expected 4 log, got", len(logs)) } } }
func TestFilters(t *testing.T) { dir, err := ioutil.TempDir("", "mipmap") if err != nil { t.Fatal(err) } defer os.RemoveAll(dir) var ( db, _ = ethdb.NewLDBDatabase(dir, 0, 0) key1, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") addr = crypto.PubkeyToAddress(key1.PublicKey) hash1 = common.BytesToHash([]byte("topic1")) hash2 = common.BytesToHash([]byte("topic2")) hash3 = common.BytesToHash([]byte("topic3")) hash4 = common.BytesToHash([]byte("topic4")) ) defer db.Close() genesis := core.WriteGenesisBlockForTesting(db, core.GenesisAccount{Address: addr, Balance: big.NewInt(1000000)}) chain, receipts := core.GenerateChain(nil, genesis, db, 1000, func(i int, gen *core.BlockGen) { var receipts types.Receipts switch i { case 1: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{ &vm.Log{ Address: addr, Topics: []common.Hash{hash1}, }, } gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} case 2: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{ &vm.Log{ Address: addr, Topics: []common.Hash{hash2}, }, } gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} case 998: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{ &vm.Log{ Address: addr, Topics: []common.Hash{hash3}, }, } gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} case 999: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{ &vm.Log{ Address: addr, Topics: []common.Hash{hash4}, }, } gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} } // store the receipts err := core.WriteReceipts(db, receipts) if err != nil { t.Fatal(err) } // i is used as block number for the writes but since the i // starts at 0 and block 0 (genesis) is already present increment // by one core.WriteMipmapBloom(db, uint64(i+1), receipts) }) for i, block := range chain { core.WriteBlock(db, block) if err := core.WriteCanonicalHash(db, block.Hash(), block.NumberU64()); err != nil { t.Fatalf("failed to insert block number: %v", err) } if err := core.WriteHeadBlockHash(db, block.Hash()); err != nil { t.Fatalf("failed to insert block number: %v", err) } if err := core.WriteBlockReceipts(db, block.Hash(), receipts[i]); err != nil { t.Fatal("error writing block receipts:", err) } } filter := New(db) filter.SetAddresses([]common.Address{addr}) filter.SetTopics([][]common.Hash{[]common.Hash{hash1, hash2, hash3, hash4}}) filter.SetBeginBlock(0) filter.SetEndBlock(-1) logs := filter.Find() if len(logs) != 4 { t.Error("expected 4 log, got", len(logs)) } filter = New(db) filter.SetAddresses([]common.Address{addr}) filter.SetTopics([][]common.Hash{[]common.Hash{hash3}}) filter.SetBeginBlock(900) filter.SetEndBlock(999) logs = filter.Find() if len(logs) != 1 { t.Error("expected 1 log, got", len(logs)) } if len(logs) > 0 && logs[0].Topics[0] != hash3 { t.Errorf("expected log[0].Topics[0] to be %x, got %x", hash3, logs[0].Topics[0]) } filter = New(db) filter.SetAddresses([]common.Address{addr}) filter.SetTopics([][]common.Hash{[]common.Hash{hash3}}) filter.SetBeginBlock(990) filter.SetEndBlock(-1) logs = filter.Find() if len(logs) != 1 { t.Error("expected 1 log, got", len(logs)) } if len(logs) > 0 && logs[0].Topics[0] != hash3 { t.Errorf("expected log[0].Topics[0] to be %x, got %x", hash3, logs[0].Topics[0]) } filter = New(db) filter.SetTopics([][]common.Hash{[]common.Hash{hash1, hash2}}) filter.SetBeginBlock(1) filter.SetEndBlock(10) logs = filter.Find() if len(logs) != 2 { t.Error("expected 2 log, got", len(logs)) } failHash := common.BytesToHash([]byte("fail")) filter = New(db) filter.SetTopics([][]common.Hash{[]common.Hash{failHash}}) filter.SetBeginBlock(0) filter.SetEndBlock(-1) logs = filter.Find() if len(logs) != 0 { t.Error("expected 0 log, got", len(logs)) } failAddr := common.BytesToAddress([]byte("failmenow")) filter = New(db) filter.SetAddresses([]common.Address{failAddr}) filter.SetBeginBlock(0) filter.SetEndBlock(-1) logs = filter.Find() if len(logs) != 0 { t.Error("expected 0 log, got", len(logs)) } filter = New(db) filter.SetTopics([][]common.Hash{[]common.Hash{failHash}, []common.Hash{hash1}}) filter.SetBeginBlock(0) filter.SetEndBlock(-1) logs = filter.Find() if len(logs) != 0 { t.Error("expected 0 log, got", len(logs)) } }
"testing" "time" "github.com/expanse-project/go-expanse/common" "github.com/expanse-project/go-expanse/core/types" "github.com/expanse-project/go-expanse/crypto" "github.com/expanse-project/go-expanse/p2p" "github.com/expanse-project/go-expanse/rlp" ) func init() { // glog.SetToStderr(true) // glog.SetV(6) } var testAccount, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") // Tests that handshake failures are detected and reported correctly. func TestStatusMsgErrors62(t *testing.T) { testStatusMsgErrors(t, 62) } func TestStatusMsgErrors63(t *testing.T) { testStatusMsgErrors(t, 63) } func testStatusMsgErrors(t *testing.T, protocol int) { pm := newTestProtocolManagerMust(t, false, 0, nil, nil) td, currentBlock, genesis := pm.blockchain.Status() defer pm.Stop() tests := []struct { code uint64 data interface{} wantError error }{