// Smoke test to ensure that imported methods get the correct package. func TestCorrectMethodPackage(t *testing.T) { // This package does not handle gccgo export data. if runtime.Compiler == "gccgo" { return } imports := make(map[string]*types.Package) _, err := Import(imports, "net/http") if err != nil { t.Fatal(err) } mutex := imports["sync"].Scope().Lookup("Mutex").(*types.TypeName).Type() mset := types.NewMethodSet(types.NewPointer(mutex)) // methods of *sync.Mutex sel := mset.Lookup(nil, "Lock") lock := sel.Obj().(*types.Func) if got, want := lock.Pkg().Path(), "sync"; got != want { t.Errorf("got package path %q; want %q", got, want) } }
// Implements displays the "implements" relation as it pertains to the // selected type. If the selection is a method, 'implements' displays // the corresponding methods of the types that would have been reported // by an implements query on the receiver type. // func implements(o *Oracle, qpos *QueryPos) (queryResult, error) { // Find the selected type. path, action := findInterestingNode(qpos.info, qpos.path) var method *types.Func var T types.Type // selected type (receiver if method != nil) switch action { case actionExpr: // method? if id, ok := path[0].(*ast.Ident); ok { if obj, ok := qpos.info.ObjectOf(id).(*types.Func); ok { recv := obj.Type().(*types.Signature).Recv() if recv == nil { return nil, fmt.Errorf("this function is not a method") } method = obj T = recv.Type() } } case actionType: T = qpos.info.TypeOf(path[0].(ast.Expr)) } if T == nil { return nil, fmt.Errorf("no type or method here") } // Find all named types, even local types (which can have // methods via promotion) and the built-in "error". // // TODO(adonovan): include all packages in PTA scope too? // i.e. don't reduceScope? // var allNamed []types.Type for _, info := range o.typeInfo { for _, obj := range info.Defs { if obj, ok := obj.(*types.TypeName); ok { allNamed = append(allNamed, obj.Type()) } } } allNamed = append(allNamed, types.Universe.Lookup("error").Type()) var msets types.MethodSetCache // Test each named type. var to, from, fromPtr []types.Type for _, U := range allNamed { if isInterface(T) { if msets.MethodSet(T).Len() == 0 { continue // empty interface } if isInterface(U) { if msets.MethodSet(U).Len() == 0 { continue // empty interface } // T interface, U interface if !types.Identical(T, U) { if types.AssignableTo(U, T) { to = append(to, U) } if types.AssignableTo(T, U) { from = append(from, U) } } } else { // T interface, U concrete if types.AssignableTo(U, T) { to = append(to, U) } else if pU := types.NewPointer(U); types.AssignableTo(pU, T) { to = append(to, pU) } } } else if isInterface(U) { if msets.MethodSet(U).Len() == 0 { continue // empty interface } // T concrete, U interface if types.AssignableTo(T, U) { from = append(from, U) } else if pT := types.NewPointer(T); types.AssignableTo(pT, U) { fromPtr = append(fromPtr, U) } } } var pos interface{} = qpos if nt, ok := deref(T).(*types.Named); ok { pos = nt.Obj() } // Sort types (arbitrarily) to ensure test determinism. sort.Sort(typesByString(to)) sort.Sort(typesByString(from)) sort.Sort(typesByString(fromPtr)) var toMethod, fromMethod, fromPtrMethod []*types.Selection // contain nils if method != nil { for _, t := range to { toMethod = append(toMethod, types.NewMethodSet(t).Lookup(method.Pkg(), method.Name())) } for _, t := range from { fromMethod = append(fromMethod, types.NewMethodSet(t).Lookup(method.Pkg(), method.Name())) } for _, t := range fromPtr { fromPtrMethod = append(fromPtrMethod, types.NewMethodSet(t).Lookup(method.Pkg(), method.Name())) } } return &implementsResult{qpos, T, pos, to, from, fromPtr, method, toMethod, fromMethod, fromPtrMethod}, nil }
func (r *implementsResult) display(printf printfFunc) { relation := "is implemented by" meth := func(sel *types.Selection) { if sel != nil { printf(sel.Obj(), "\t%s method (%s).%s", relation, r.qpos.TypeString(sel.Recv()), sel.Obj().Name()) } } if isInterface(r.t) { if types.NewMethodSet(r.t).Len() == 0 { // TODO(adonovan): cache mset printf(r.pos, "empty interface type %s", r.t) return } if r.method == nil { printf(r.pos, "interface type %s", r.t) } else { printf(r.method, "abstract method %s", r.qpos.ObjectString(r.method)) } // Show concrete types (or methods) first; use two passes. for i, sub := range r.to { if !isInterface(sub) { if r.method == nil { printf(deref(sub).(*types.Named).Obj(), "\t%s %s type %s", relation, typeKind(sub), sub) } else { meth(r.toMethod[i]) } } } for i, sub := range r.to { if isInterface(sub) { if r.method == nil { printf(sub.(*types.Named).Obj(), "\t%s %s type %s", relation, typeKind(sub), sub) } else { meth(r.toMethod[i]) } } } relation = "implements" for i, super := range r.from { if r.method == nil { printf(super.(*types.Named).Obj(), "\t%s %s", relation, super) } else { meth(r.fromMethod[i]) } } } else { relation = "implements" if r.from != nil { if r.method == nil { printf(r.pos, "%s type %s", typeKind(r.t), r.t) } else { printf(r.method, "concrete method %s", r.qpos.ObjectString(r.method)) } for i, super := range r.from { if r.method == nil { printf(super.(*types.Named).Obj(), "\t%s %s", relation, super) } else { meth(r.fromMethod[i]) } } } if r.fromPtr != nil { if r.method == nil { printf(r.pos, "pointer type *%s", r.t) } else { // TODO(adonovan): de-dup (C).f and (*C).f implementing (I).f. printf(r.method, "concrete method %s", r.qpos.ObjectString(r.method)) } for i, psuper := range r.fromPtr { if r.method == nil { printf(psuper.(*types.Named).Obj(), "\t%s %s", relation, psuper) } else { meth(r.fromPtrMethod[i]) } } } else if r.from == nil { printf(r.pos, "%s type %s implements only interface{}", typeKind(r.t), r.t) } } }