// flatten returns a list of directly contained fields in the preorder // traversal of the type tree of t. The resulting elements are all // scalars (basic types or pointerlike types), except for struct/array // "identity" nodes, whose type is that of the aggregate. // // reflect.Value is considered pointerlike, similar to interface{}. // // Callers must not mutate the result. // func (a *analysis) flatten(t types.Type) []*fieldInfo { fl, ok := a.flattenMemo[t] if !ok { switch t := t.(type) { case *types.Named: u := t.Underlying() if isInterface(u) { // Debuggability hack: don't remove // the named type from interfaces as // they're very verbose. fl = append(fl, &fieldInfo{typ: t}) } else { fl = a.flatten(u) } case *types.Basic, *types.Signature, *types.Chan, *types.Map, *types.Interface, *types.Slice, *types.Pointer: fl = append(fl, &fieldInfo{typ: t}) case *types.Array: fl = append(fl, &fieldInfo{typ: t}) // identity node for _, fi := range a.flatten(t.Elem()) { fl = append(fl, &fieldInfo{typ: fi.typ, op: true, tail: fi}) } case *types.Struct: fl = append(fl, &fieldInfo{typ: t}) // identity node for i, n := 0, t.NumFields(); i < n; i++ { f := t.Field(i) for _, fi := range a.flatten(f.Type()) { fl = append(fl, &fieldInfo{typ: fi.typ, op: f, tail: fi}) } } case *types.Tuple: // No identity node: tuples are never address-taken. n := t.Len() if n == 1 { // Don't add a fieldInfo link for singletons, // e.g. in params/results. fl = append(fl, a.flatten(t.At(0).Type())...) } else { for i := 0; i < n; i++ { f := t.At(i) for _, fi := range a.flatten(f.Type()) { fl = append(fl, &fieldInfo{typ: fi.typ, op: i, tail: fi}) } } } default: panic(t) } a.flattenMemo[t] = fl } return fl }
// zero returns a new "zero" value of the specified type. func zero(t types.Type) value { switch t := t.(type) { case *types.Basic: if t.Kind() == types.UntypedNil { panic("untyped nil has no zero value") } if t.Info()&types.IsUntyped != 0 { // TODO(adonovan): make it an invariant that // this is unreachable. Currently some // constants have 'untyped' types when they // should be defaulted by the typechecker. t = ssa.DefaultType(t).(*types.Basic) } switch t.Kind() { case types.Bool: return false case types.Int: return int(0) case types.Int8: return int8(0) case types.Int16: return int16(0) case types.Int32: return int32(0) case types.Int64: return int64(0) case types.Uint: return uint(0) case types.Uint8: return uint8(0) case types.Uint16: return uint16(0) case types.Uint32: return uint32(0) case types.Uint64: return uint64(0) case types.Uintptr: return uintptr(0) case types.Float32: return float32(0) case types.Float64: return float64(0) case types.Complex64: return complex64(0) case types.Complex128: return complex128(0) case types.String: return "" case types.UnsafePointer: return unsafe.Pointer(nil) default: panic(fmt.Sprint("zero for unexpected type:", t)) } case *types.Pointer: return (*value)(nil) case *types.Array: a := make(array, t.Len()) for i := range a { a[i] = zero(t.Elem()) } return a case *types.Named: return zero(t.Underlying()) case *types.Interface: return iface{} // nil type, methodset and value case *types.Slice: return []value(nil) case *types.Struct: s := make(structure, t.NumFields()) for i := range s { s[i] = zero(t.Field(i).Type()) } return s case *types.Tuple: if t.Len() == 1 { return zero(t.At(0).Type()) } s := make(tuple, t.Len()) for i := range s { s[i] = zero(t.At(i).Type()) } return s case *types.Chan: return chan value(nil) case *types.Map: if usesBuiltinMap(t.Key()) { return map[value]value(nil) } return (*hashmap)(nil) case *types.Signature: return (*ssa.Function)(nil) } panic(fmt.Sprint("zero: unexpected ", t)) }
// addRuntimeType is called for each concrete type that can be the // dynamic type of some interface or reflect.Value. // Adapted from needMethods in go/ssa/builder.go // func (r *rta) addRuntimeType(T types.Type, skip bool) { if prev, ok := r.result.RuntimeTypes.At(T).(bool); ok { if skip && !prev { r.result.RuntimeTypes.Set(T, skip) } return } r.result.RuntimeTypes.Set(T, skip) mset := r.prog.MethodSets.MethodSet(T) if _, ok := T.Underlying().(*types.Interface); !ok { // T is a new concrete type. for i, n := 0, mset.Len(); i < n; i++ { sel := mset.At(i) m := sel.Obj() if m.Exported() { // Exported methods are always potentially callable via reflection. r.addReachable(r.prog.Method(sel), true) } } // Add callgraph edge for each existing dynamic // "invoke"-mode call via that interface. for _, I := range r.interfaces(T) { sites, _ := r.invokeSites.At(I).([]ssa.CallInstruction) for _, site := range sites { r.addInvokeEdge(site, T) } } } // Precondition: T is not a method signature (*Signature with Recv()!=nil). // Recursive case: skip => don't call makeMethods(T). // Each package maintains its own set of types it has visited. var n *types.Named switch T := T.(type) { case *types.Named: n = T case *types.Pointer: n, _ = T.Elem().(*types.Named) } if n != nil { owner := n.Obj().Pkg() if owner == nil { return // built-in error type } } // Recursion over signatures of each exported method. for i := 0; i < mset.Len(); i++ { if mset.At(i).Obj().Exported() { sig := mset.At(i).Type().(*types.Signature) r.addRuntimeType(sig.Params(), true) // skip the Tuple itself r.addRuntimeType(sig.Results(), true) // skip the Tuple itself } } switch t := T.(type) { case *types.Basic: // nop case *types.Interface: // nop---handled by recursion over method set. case *types.Pointer: r.addRuntimeType(t.Elem(), false) case *types.Slice: r.addRuntimeType(t.Elem(), false) case *types.Chan: r.addRuntimeType(t.Elem(), false) case *types.Map: r.addRuntimeType(t.Key(), false) r.addRuntimeType(t.Elem(), false) case *types.Signature: if t.Recv() != nil { panic(fmt.Sprintf("Signature %s has Recv %s", t, t.Recv())) } r.addRuntimeType(t.Params(), true) // skip the Tuple itself r.addRuntimeType(t.Results(), true) // skip the Tuple itself case *types.Named: // A pointer-to-named type can be derived from a named // type via reflection. It may have methods too. r.addRuntimeType(types.NewPointer(T), false) // Consider 'type T struct{S}' where S has methods. // Reflection provides no way to get from T to struct{S}, // only to S, so the method set of struct{S} is unwanted, // so set 'skip' flag during recursion. r.addRuntimeType(t.Underlying(), true) case *types.Array: r.addRuntimeType(t.Elem(), false) case *types.Struct: for i, n := 0, t.NumFields(); i < n; i++ { r.addRuntimeType(t.Field(i).Type(), false) } case *types.Tuple: for i, n := 0, t.Len(); i < n; i++ { r.addRuntimeType(t.At(i).Type(), false) } default: panic(T) } }
// hashFor computes the hash of t. func (h Hasher) hashFor(t types.Type) uint32 { // See Identical for rationale. switch t := t.(type) { case *types.Basic: return uint32(t.Kind()) case *types.Array: return 9043 + 2*uint32(t.Len()) + 3*h.Hash(t.Elem()) case *types.Slice: return 9049 + 2*h.Hash(t.Elem()) case *types.Struct: var hash uint32 = 9059 for i, n := 0, t.NumFields(); i < n; i++ { f := t.Field(i) if f.Anonymous() { hash += 8861 } hash += hashString(t.Tag(i)) hash += hashString(f.Name()) // (ignore f.Pkg) hash += h.Hash(f.Type()) } return hash case *types.Pointer: return 9067 + 2*h.Hash(t.Elem()) case *types.Signature: var hash uint32 = 9091 if t.Variadic() { hash *= 8863 } return hash + 3*h.hashTuple(t.Params()) + 5*h.hashTuple(t.Results()) case *types.Interface: var hash uint32 = 9103 for i, n := 0, t.NumMethods(); i < n; i++ { // See go/types.identicalMethods for rationale. // Method order is not significant. // Ignore m.Pkg(). m := t.Method(i) hash += 3*hashString(m.Name()) + 5*h.Hash(m.Type()) } return hash case *types.Map: return 9109 + 2*h.Hash(t.Key()) + 3*h.Hash(t.Elem()) case *types.Chan: return 9127 + 2*uint32(t.Dir()) + 3*h.Hash(t.Elem()) case *types.Named: // Not safe with a copying GC; objects may move. return uint32(reflect.ValueOf(t.Obj()).Pointer()) case *types.Tuple: return h.hashTuple(t) } panic(t) }