func ExampleCholesky() { // Construct a symmetric positive definite matrix. tmp := mat64.NewDense(4, 4, []float64{ 2, 6, 8, -4, 1, 8, 7, -2, 2, 2, 1, 7, 8, -2, -2, 1, }) var a mat64.SymDense a.SymOuterK(1, tmp) fmt.Printf("a = %0.4v\n", mat64.Formatted(&a, mat64.Prefix(" "))) // Compute the cholesky factorization. var chol mat64.Cholesky if ok := chol.Factorize(&a); !ok { fmt.Println("a matrix is not positive semi-definite.") } // Find the determinant. fmt.Printf("\nThe determinant of a is %0.4g\n\n", chol.Det()) // Use the factorization to solve the system of equations a * x = b. b := mat64.NewVector(4, []float64{1, 2, 3, 4}) var x mat64.Vector if err := x.SolveCholeskyVec(&chol, b); err != nil { fmt.Println("Matrix is near singular: ", err) } fmt.Println("Solve a * x = b") fmt.Printf("x = %0.4v\n", mat64.Formatted(&x, mat64.Prefix(" "))) // Extract the factorization and check that it equals the original matrix. var t mat64.TriDense t.LFromCholesky(&chol) var test mat64.Dense test.Mul(&t, t.T()) fmt.Println() fmt.Printf("L * L^T = %0.4v\n", mat64.Formatted(&a, mat64.Prefix(" "))) // Output: // a = ⎡120 114 -4 -16⎤ // ⎢114 118 11 -24⎥ // ⎢ -4 11 58 17⎥ // ⎣-16 -24 17 73⎦ // // The determinant of a is 1.543e+06 // // Solve a * x = b // x = ⎡ -0.239⎤ // ⎢ 0.2732⎥ // ⎢-0.04681⎥ // ⎣ 0.1031⎦ // // L * L^T = ⎡120 114 -4 -16⎤ // ⎢114 118 11 -24⎥ // ⎢ -4 11 58 17⎥ // ⎣-16 -24 17 73⎦ }
// MarginalNormal returns the marginal distribution of the given input variables. // That is, MarginalNormal returns // p(x_i) = \int_{x_o} p(x_i | x_o) p(x_o) dx_o // where x_i are the dimensions in the input, and x_o are the remaining dimensions. // The input src is passed to the call to NewNormal. func (n *Normal) MarginalNormal(vars []int, src *rand.Rand) (*Normal, bool) { newMean := make([]float64, len(vars)) for i, v := range vars { newMean[i] = n.mu[v] } n.setSigma() var s mat64.SymDense s.SubsetSym(n.sigma, vars) return NewNormal(newMean, &s, src) }
// NewProposalNormal constructs a new ProposalNormal for use as a proposal // distribution for Metropolis-Hastings. ProposalNormal is a multivariate normal // distribution (implemented by distmv.Normal) where the covariance matrix is fixed // and the mean of the distribution changes. // // NewProposalNormal returns {nil, false} if the covariance matrix is not positive-definite. func NewProposalNormal(sigma *mat64.SymDense, src *rand.Rand) (*ProposalNormal, bool) { mu := make([]float64, sigma.Symmetric()) normal, ok := distmv.NewNormal(mu, sigma, src) if !ok { return nil, false } p := &ProposalNormal{ normal: normal, } return p, true }
// CovarianceMatrix returns the covariance matrix of the distribution. Upon // return, the value at element {i, j} of the covariance matrix is equal to // the covariance of the i^th and j^th variables. // covariance(i, j) = E[(x_i - E[x_i])(x_j - E[x_j])] // If the input matrix is nil a new matrix is allocated, otherwise the result // is stored in-place into the input. func (n *Normal) CovarianceMatrix(s *mat64.SymDense) *mat64.SymDense { if s == nil { s = mat64.NewSymDense(n.Dim(), nil) } sn := s.Symmetric() if sn != n.Dim() { panic("normal: input matrix size mismatch") } n.setSigma() s.CopySym(n.sigma) return s }
func ExampleCholeskySymRankOne() { a := mat64.NewSymDense(4, []float64{ 1, 1, 1, 1, 0, 2, 3, 4, 0, 0, 6, 10, 0, 0, 0, 20, }) fmt.Printf("A = %0.4v\n", mat64.Formatted(a, mat64.Prefix(" "))) // Compute the Cholesky factorization. var chol mat64.Cholesky if ok := chol.Factorize(a); !ok { fmt.Println("matrix a is not positive definite.") } x := mat64.NewVector(4, []float64{0, 0, 0, 1}) fmt.Printf("\nx = %0.4v\n", mat64.Formatted(x, mat64.Prefix(" "))) // Rank-1 update the factorization. chol.SymRankOne(&chol, 1, x) // Rank-1 update the matrix a. a.SymRankOne(a, 1, x) var au mat64.SymDense au.FromCholesky(&chol) // Print the matrix that was updated directly. fmt.Printf("\nA' = %0.4v\n", mat64.Formatted(a, mat64.Prefix(" "))) // Print the matrix recovered from the factorization. fmt.Printf("\nU'^T * U' = %0.4v\n", mat64.Formatted(&au, mat64.Prefix(" "))) // Output: // A = ⎡ 1 1 1 1⎤ // ⎢ 1 2 3 4⎥ // ⎢ 1 3 6 10⎥ // ⎣ 1 4 10 20⎦ // // x = ⎡0⎤ // ⎢0⎥ // ⎢0⎥ // ⎣1⎦ // // A' = ⎡ 1 1 1 1⎤ // ⎢ 1 2 3 4⎥ // ⎢ 1 3 6 10⎥ // ⎣ 1 4 10 21⎦ // // U'^T * U' = ⎡ 1 1 1 1⎤ // ⎢ 1 2 3 4⎥ // ⎢ 1 3 6 10⎥ // ⎣ 1 4 10 21⎦ }
// randomNormal constructs a random Normal distribution. func randomNormal(dim int) (*distmv.Normal, bool) { data := make([]float64, dim*dim) for i := range data { data[i] = rand.Float64() } a := mat64.NewDense(dim, dim, data) var sigma mat64.SymDense sigma.SymOuterK(1, a) mu := make([]float64, dim) for i := range mu { mu[i] = rand.NormFloat64() } return distmv.NewNormal(mu, &sigma, nil) }
func (gp *GP) setKernelMat(s *mat64.SymDense, noise float64) { n := s.Symmetric() for i := 0; i < n; i++ { for j := i; j < n; j++ { v := gp.kernel.Distance( gp.inputs.RawRowView(i), gp.inputs.RawRowView(j), ) if i == j { v += noise } s.SetSym(i, j, v) } } }
// covToCorr converts a covariance matrix to a correlation matrix. func covToCorr(c *mat64.SymDense) { r := c.Symmetric() s := make([]float64, r) for i := 0; i < r; i++ { s[i] = 1 / math.Sqrt(c.At(i, i)) } for i, sx := range s { // Ensure that the diagonal has exactly ones. c.SetSym(i, i, 1) for j := i + 1; j < r; j++ { v := c.At(i, j) c.SetSym(i, j, v*sx*s[j]) } } }
func randomNormal(sz int, rnd *rand.Rand) *Normal { mu := make([]float64, sz) for i := range mu { mu[i] = rnd.Float64() } data := make([]float64, sz*sz) for i := range data { data[i] = rnd.Float64() } dM := mat64.NewDense(sz, sz, data) var sigma mat64.SymDense sigma.SymOuterK(1, dM) normal, ok := NewNormal(mu, &sigma, nil) if !ok { log.Fatal("bad test, not pos def") } return normal }
func ExampleSymDense_SubsetSym() { n := 5 s := mat64.NewSymDense(5, nil) count := 1.0 for i := 0; i < n; i++ { for j := i; j < n; j++ { s.SetSym(i, j, count) count++ } } fmt.Println("Original matrix:") fmt.Printf("%0.4v\n\n", mat64.Formatted(s)) // Take the subset {0, 2, 4} var sub mat64.SymDense sub.SubsetSym(s, []int{0, 2, 4}) fmt.Println("Subset {0, 2, 4}") fmt.Printf("%0.4v\n\n", mat64.Formatted(&sub)) // Take the subset {0, 0, 4} sub.SubsetSym(s, []int{0, 0, 4}) fmt.Println("Subset {0, 0, 4}") fmt.Printf("%0.4v\n\n", mat64.Formatted(&sub)) // Output: // Original matrix: // ⎡ 1 2 3 4 5⎤ // ⎢ 2 6 7 8 9⎥ // ⎢ 3 7 10 11 12⎥ // ⎢ 4 8 11 13 14⎥ // ⎣ 5 9 12 14 15⎦ // // Subset {0, 2, 4} // ⎡ 1 3 5⎤ // ⎢ 3 10 12⎥ // ⎣ 5 12 15⎦ // // Subset {0, 0, 4} // ⎡ 1 1 5⎤ // ⎢ 1 1 5⎥ // ⎣ 5 5 15⎦ }
// NewNormalPrecision creates a new Normal distribution with the given mean and // precision matrix (inverse of the covariance matrix). NewNormalPrecision // panics if len(mu) is not equal to prec.Symmetric(). If the precision matrix // is not positive-definite, NewNormalPrecision returns nil for norm and false // for ok. func NewNormalPrecision(mu []float64, prec *mat64.SymDense, src *rand.Rand) (norm *Normal, ok bool) { if len(mu) == 0 { panic(badZeroDimension) } dim := prec.Symmetric() if dim != len(mu) { panic(badSizeMismatch) } // TODO(btracey): Computing a matrix inverse is generally numerically instable. // This only has to compute the inverse of a positive definite matrix, which // is much better, but this still loses precision. It is worth considering if // instead the precision matrix should be stored explicitly and used instead // of the Cholesky decomposition of the covariance matrix where appropriate. var chol mat64.Cholesky ok = chol.Factorize(prec) if !ok { return nil, false } var sigma mat64.SymDense sigma.InverseCholesky(&chol) return NewNormal(mu, &sigma, src) }
// corrToCov converts a correlation matrix to a covariance matrix. // The input sigma should be vector of standard deviations corresponding // to the covariance. It will panic if len(sigma) is not equal to the // number of rows in the correlation matrix. func corrToCov(c *mat64.SymDense, sigma []float64) { r, _ := c.Dims() if r != len(sigma) { panic(matrix.ErrShape) } for i, sx := range sigma { // Ensure that the diagonal has exactly sigma squared. c.SetSym(i, i, sx*sx) for j := i + 1; j < r; j++ { v := c.At(i, j) c.SetSym(i, j, v*sx*sigma[j]) } } }
// CovarianceMatrix calculates a covariance matrix (also known as a // variance-covariance matrix) from a matrix of data, using a two-pass // algorithm. // // The weights must have length equal to the number of rows in // input data matrix x. If cov is nil, then a new matrix with appropriate size will // be constructed. If cov is not nil, it should have the same number of columns as the // input data matrix x, and it will be used as the destination for the covariance // data. Weights must not be negative. func CovarianceMatrix(cov *mat64.SymDense, x mat64.Matrix, weights []float64) *mat64.SymDense { // This is the matrix version of the two-pass algorithm. It doesn't use the // additional floating point error correction that the Covariance function uses // to reduce the impact of rounding during centering. r, c := x.Dims() if cov == nil { cov = mat64.NewSymDense(c, nil) } else if n := cov.Symmetric(); n != c { panic(matrix.ErrShape) } var xt mat64.Dense xt.Clone(x.T()) // Subtract the mean of each of the columns. for i := 0; i < c; i++ { v := xt.RawRowView(i) // This will panic with ErrShape if len(weights) != len(v), so // we don't have to check the size later. mean := Mean(v, weights) floats.AddConst(-mean, v) } if weights == nil { // Calculate the normalization factor // scaled by the sample size. cov.SymOuterK(1/(float64(r)-1), &xt) return cov } // Multiply by the sqrt of the weights, so that multiplication is symmetric. sqrtwts := make([]float64, r) for i, w := range weights { if w < 0 { panic("stat: negative covariance matrix weights") } sqrtwts[i] = math.Sqrt(w) } // Weight the rows. for i := 0; i < c; i++ { v := xt.RawRowView(i) floats.Mul(v, sqrtwts) } // Calculate the normalization factor // scaled by the weighted sample size. cov.SymOuterK(1/(floats.Sum(weights)-1), &xt) return cov }
func (BrownBadlyScaled) Hess(x []float64, hess *mat64.SymDense) { if len(x) != 2 { panic("dimension of the problem must be 2") } if len(x) != hess.Symmetric() { panic("incorrect size of the Hessian") } h00 := 2 + 2*x[1]*x[1] h01 := 4*x[0]*x[1] - 4 h11 := 2 + 2*x[0]*x[0] hess.SetSym(0, 0, h00) hess.SetSym(0, 1, h01) hess.SetSym(1, 1, h11) }
func (PowellBadlyScaled) Hess(x []float64, hess *mat64.SymDense) { if len(x) != 2 { panic("dimension of the problem must be 2") } if len(x) != hess.Symmetric() { panic("incorrect size of the Hessian") } t1 := 1e4*x[0]*x[1] - 1 s1 := math.Exp(-x[0]) s2 := math.Exp(-x[1]) t2 := s1 + s2 - 1.0001 h00 := 2 * (1e8*x[1]*x[1] + s1*(s1+t2)) h01 := 2 * (1e4*(1+2*t1) + s1*s2) h11 := 2 * (1e8*x[0]*x[0] + s2*(s2+t2)) hess.SetSym(0, 0, h00) hess.SetSym(0, 1, h01) hess.SetSym(1, 1, h11) }
func (Beale) Hess(x []float64, hess *mat64.SymDense) { if len(x) != 2 { panic("dimension of the problem must be 2") } if len(x) != hess.Symmetric() { panic("incorrect size of the Hessian") } t1 := 1 - x[1] t2 := 1 - x[1]*x[1] t3 := 1 - x[1]*x[1]*x[1] f1 := 1.5 - x[1]*t1 f2 := 2.25 - x[1]*t2 f3 := 2.625 - x[1]*t3 h00 := 2 * (t1*t1 + t2*t2 + t3*t3) h01 := 2 * (f1 + x[1]*(2*f2+3*x[1]*f3) - x[0]*(t1+x[1]*(2*t2+3*x[1]*t3))) h11 := 2 * x[0] * (x[0] + 2*f2 + x[1]*(6*f3+x[0]*x[1]*(4+9*x[1]*x[1]))) hess.SetSym(0, 0, h00) hess.SetSym(0, 1, h01) hess.SetSym(1, 1, h11) }
func (Watson) Hess(x []float64, hess *mat64.SymDense) { dim := len(x) if dim != hess.Symmetric() { panic("incorrect size of the Hessian") } for j := 0; j < dim; j++ { for k := j; k < dim; k++ { hess.SetSym(j, k, 0) } } for i := 1; i <= 29; i++ { d1 := float64(i) / 29 d2 := 1.0 var s1 float64 for j := 1; j < dim; j++ { s1 += float64(j) * d2 * x[j] d2 *= d1 } d2 = 1.0 var s2 float64 for _, v := range x { s2 += d2 * v d2 *= d1 } t := s1 - s2*s2 - 1 s3 := 2 * d1 * s2 d2 = 2 / d1 th := 2 * d1 * d1 * t for j := 0; j < dim; j++ { v := float64(j) - s3 d3 := 1 / d1 for k := 0; k <= j; k++ { hess.SetSym(k, j, hess.At(k, j)+d2*d3*(v*(float64(k)-s3)-th)) d3 *= d1 } d2 *= d1 } } t1 := x[1] - x[0]*x[0] - 1 hess.SetSym(0, 0, hess.At(0, 0)+8*x[0]*x[0]+2-4*t1) hess.SetSym(0, 1, hess.At(0, 1)-4*x[0]) hess.SetSym(1, 1, hess.At(1, 1)+2) }
func (Wood) Hess(x []float64, hess *mat64.SymDense) { if len(x) != 4 { panic("dimension of the problem must be 4") } if len(x) != hess.Symmetric() { panic("incorrect size of the Hessian") } hess.SetSym(0, 0, 400*(3*x[0]*x[0]-x[1])+2) hess.SetSym(0, 1, -400*x[0]) hess.SetSym(1, 1, 220.2) hess.SetSym(0, 2, 0) hess.SetSym(1, 2, 0) hess.SetSym(2, 2, 360*(3*x[2]*x[2]-x[3])+2) hess.SetSym(0, 3, 0) hess.SetSym(1, 3, 19.8) hess.SetSym(2, 3, -360*x[2]) hess.SetSym(3, 3, 200.2) }
// ConditionNormal returns the Normal distribution that is the receiver conditioned // on the input evidence. The returned multivariate normal has dimension // n - len(observed), where n is the dimension of the original receiver. The updated // mean and covariance are // mu = mu_un + sigma_{ob,un}^T * sigma_{ob,ob}^-1 (v - mu_ob) // sigma = sigma_{un,un} - sigma_{ob,un}^T * sigma_{ob,ob}^-1 * sigma_{ob,un} // where mu_un and mu_ob are the original means of the unobserved and observed // variables respectively, sigma_{un,un} is the unobserved subset of the covariance // matrix, sigma_{ob,ob} is the observed subset of the covariance matrix, and // sigma_{un,ob} are the cross terms. The elements of x_2 have been observed with // values v. The dimension order is preserved during conditioning, so if the value // of dimension 1 is observed, the returned normal represents dimensions {0, 2, ...} // of the original Normal distribution. // // ConditionNormal returns {nil, false} if there is a failure during the update. // Mathematically this is impossible, but can occur with finite precision arithmetic. func (n *Normal) ConditionNormal(observed []int, values []float64, src *rand.Rand) (*Normal, bool) { if len(observed) == 0 { panic("normal: no observed value") } if len(observed) != len(values) { panic("normal: input slice length mismatch") } for _, v := range observed { if v < 0 || v >= n.Dim() { panic("normal: observed value out of bounds") } } ob := len(observed) unob := n.Dim() - ob obMap := make(map[int]struct{}) for _, v := range observed { if _, ok := obMap[v]; ok { panic("normal: observed dimension occurs twice") } obMap[v] = struct{}{} } if len(observed) == n.Dim() { panic("normal: all dimensions observed") } unobserved := make([]int, 0, unob) for i := 0; i < n.Dim(); i++ { if _, ok := obMap[i]; !ok { unobserved = append(unobserved, i) } } mu1 := make([]float64, unob) for i, v := range unobserved { mu1[i] = n.mu[v] } mu2 := make([]float64, ob) // really v - mu2 for i, v := range observed { mu2[i] = values[i] - n.mu[v] } n.setSigma() var sigma11, sigma22 mat64.SymDense sigma11.SubsetSym(n.sigma, unobserved) sigma22.SubsetSym(n.sigma, observed) sigma21 := mat64.NewDense(ob, unob, nil) for i, r := range observed { for j, c := range unobserved { v := n.sigma.At(r, c) sigma21.Set(i, j, v) } } var chol mat64.Cholesky ok := chol.Factorize(&sigma22) if !ok { return nil, ok } // Compute sigma_{2,1}^T * sigma_{2,2}^-1 (v - mu_2). v := mat64.NewVector(ob, mu2) var tmp, tmp2 mat64.Vector err := tmp.SolveCholeskyVec(&chol, v) if err != nil { return nil, false } tmp2.MulVec(sigma21.T(), &tmp) // Compute sigma_{2,1}^T * sigma_{2,2}^-1 * sigma_{2,1}. // TODO(btracey): Should this be a method of SymDense? var tmp3, tmp4 mat64.Dense err = tmp3.SolveCholesky(&chol, sigma21) if err != nil { return nil, false } tmp4.Mul(sigma21.T(), &tmp3) for i := range mu1 { mu1[i] += tmp2.At(i, 0) } // TODO(btracey): If tmp2 can constructed with a method, then this can be // replaced with SubSym. for i := 0; i < len(unobserved); i++ { for j := i; j < len(unobserved); j++ { v := sigma11.At(i, j) sigma11.SetSym(i, j, v-tmp4.At(i, j)) } } return NewNormal(mu1, &sigma11, src) }
func (BrownAndDennis) Hess(x []float64, hess *mat64.SymDense) { if len(x) != 4 { panic("dimension of the problem must be 4") } if len(x) != hess.Symmetric() { panic("incorrect size of the Hessian") } for i := 0; i < 4; i++ { for j := i; j < 4; j++ { hess.SetSym(i, j, 0) } } for i := 1; i <= 20; i++ { d1 := float64(i) / 5 d2 := math.Sin(d1) t1 := x[0] + d1*x[1] - math.Exp(d1) t2 := x[2] + d2*x[3] - math.Cos(d1) t := t1*t1 + t2*t2 s3 := 2 * t1 * t2 r1 := t + 2*t1*t1 r2 := t + 2*t2*t2 hess.SetSym(0, 0, hess.At(0, 0)+r1) hess.SetSym(0, 1, hess.At(0, 1)+d1*r1) hess.SetSym(1, 1, hess.At(1, 1)+d1*d1*r1) hess.SetSym(0, 2, hess.At(0, 2)+s3) hess.SetSym(1, 2, hess.At(1, 2)+d1*s3) hess.SetSym(2, 2, hess.At(2, 2)+r2) hess.SetSym(0, 3, hess.At(0, 3)+d2*s3) hess.SetSym(1, 3, hess.At(1, 3)+d1*d2*s3) hess.SetSym(2, 3, hess.At(2, 3)+d2*r2) hess.SetSym(3, 3, hess.At(3, 3)+d2*d2*r2) } for i := 0; i < 4; i++ { for j := i; j < 4; j++ { hess.SetSym(i, j, 4*hess.At(i, j)) } } }
func TestConditionNormal(t *testing.T) { // Uncorrelated values shouldn't influence the updated values. for _, test := range []struct { mu []float64 sigma *mat64.SymDense observed []int values []float64 newMu []float64 newSigma *mat64.SymDense }{ { mu: []float64{2, 3}, sigma: mat64.NewSymDense(2, []float64{2, 0, 0, 5}), observed: []int{0}, values: []float64{10}, newMu: []float64{3}, newSigma: mat64.NewSymDense(1, []float64{5}), }, { mu: []float64{2, 3}, sigma: mat64.NewSymDense(2, []float64{2, 0, 0, 5}), observed: []int{1}, values: []float64{10}, newMu: []float64{2}, newSigma: mat64.NewSymDense(1, []float64{2}), }, { mu: []float64{2, 3, 4}, sigma: mat64.NewSymDense(3, []float64{2, 0, 0, 0, 5, 0, 0, 0, 10}), observed: []int{1}, values: []float64{10}, newMu: []float64{2, 4}, newSigma: mat64.NewSymDense(2, []float64{2, 0, 0, 10}), }, { mu: []float64{2, 3, 4}, sigma: mat64.NewSymDense(3, []float64{2, 0, 0, 0, 5, 0, 0, 0, 10}), observed: []int{0, 1}, values: []float64{10, 15}, newMu: []float64{4}, newSigma: mat64.NewSymDense(1, []float64{10}), }, { mu: []float64{2, 3, 4, 5}, sigma: mat64.NewSymDense(4, []float64{2, 0.5, 0, 0, 0.5, 5, 0, 0, 0, 0, 10, 2, 0, 0, 2, 3}), observed: []int{0, 1}, values: []float64{10, 15}, newMu: []float64{4, 5}, newSigma: mat64.NewSymDense(2, []float64{10, 2, 2, 3}), }, } { normal, ok := NewNormal(test.mu, test.sigma, nil) if !ok { t.Fatalf("Bad test, original sigma not positive definite") } newNormal, ok := normal.ConditionNormal(test.observed, test.values, nil) if !ok { t.Fatalf("Bad test, update failure") } if !floats.EqualApprox(test.newMu, newNormal.mu, 1e-12) { t.Errorf("Updated mean mismatch. Want %v, got %v.", test.newMu, newNormal.mu) } var sigma mat64.SymDense sigma.FromCholesky(&newNormal.chol) if !mat64.EqualApprox(test.newSigma, &sigma, 1e-12) { t.Errorf("Updated sigma mismatch\n.Want:\n% v\nGot:\n% v\n", test.newSigma, sigma) } } // Test bivariate case where the update rule is analytic for _, test := range []struct { mu []float64 std []float64 rho float64 value float64 }{ { mu: []float64{2, 3}, std: []float64{3, 5}, rho: 0.9, value: 1000, }, { mu: []float64{2, 3}, std: []float64{3, 5}, rho: -0.9, value: 1000, }, } { std := test.std rho := test.rho sigma := mat64.NewSymDense(2, []float64{std[0] * std[0], std[0] * std[1] * rho, std[0] * std[1] * rho, std[1] * std[1]}) normal, ok := NewNormal(test.mu, sigma, nil) if !ok { t.Fatalf("Bad test, original sigma not positive definite") } newNormal, ok := normal.ConditionNormal([]int{1}, []float64{test.value}, nil) if !ok { t.Fatalf("Bad test, update failed") } var newSigma mat64.SymDense newSigma.FromCholesky(&newNormal.chol) trueMean := test.mu[0] + rho*(std[0]/std[1])*(test.value-test.mu[1]) if math.Abs(trueMean-newNormal.mu[0]) > 1e-14 { t.Errorf("Mean mismatch. Want %v, got %v", trueMean, newNormal.mu[0]) } trueVar := (1 - rho*rho) * std[0] * std[0] if math.Abs(trueVar-newSigma.At(0, 0)) > 1e-14 { t.Errorf("Std mismatch. Want %v, got %v", trueMean, newNormal.mu[0]) } } // Test via sampling. for _, test := range []struct { mu []float64 sigma *mat64.SymDense observed []int unobserved []int value []float64 }{ // The indices in unobserved must be in ascending order for this test. { mu: []float64{2, 3, 4}, sigma: mat64.NewSymDense(3, []float64{2, 0.5, 3, 0.5, 1, 0.6, 3, 0.6, 10}), observed: []int{0}, unobserved: []int{1, 2}, value: []float64{1.9}, }, { mu: []float64{2, 3, 4, 5}, sigma: mat64.NewSymDense(4, []float64{2, 0.5, 3, 0.1, 0.5, 1, 0.6, 0.2, 3, 0.6, 10, 0.3, 0.1, 0.2, 0.3, 3}), observed: []int{0, 3}, unobserved: []int{1, 2}, value: []float64{1.9, 2.9}, }, } { totalSamp := 4000000 var nSamp int samples := mat64.NewDense(totalSamp, len(test.mu), nil) normal, ok := NewNormal(test.mu, test.sigma, nil) if !ok { t.Errorf("bad test") } sample := make([]float64, len(test.mu)) for i := 0; i < totalSamp; i++ { normal.Rand(sample) isClose := true for i, v := range test.observed { if math.Abs(sample[v]-test.value[i]) > 1e-1 { isClose = false break } } if isClose { samples.SetRow(nSamp, sample) nSamp++ } } if nSamp < 100 { t.Errorf("bad test, not enough samples") continue } samples = samples.View(0, 0, nSamp, len(test.mu)).(*mat64.Dense) // Compute mean and covariance matrix. estMean := make([]float64, len(test.mu)) for i := range estMean { estMean[i] = stat.Mean(mat64.Col(nil, i, samples), nil) } estCov := stat.CovarianceMatrix(nil, samples, nil) // Compute update rule. newNormal, ok := normal.ConditionNormal(test.observed, test.value, nil) if !ok { t.Fatalf("Bad test, update failure") } var subEstMean []float64 for _, v := range test.unobserved { subEstMean = append(subEstMean, estMean[v]) } subEstCov := mat64.NewSymDense(len(test.unobserved), nil) for i := 0; i < len(test.unobserved); i++ { for j := i; j < len(test.unobserved); j++ { subEstCov.SetSym(i, j, estCov.At(test.unobserved[i], test.unobserved[j])) } } for i, v := range subEstMean { if math.Abs(newNormal.mu[i]-v) > 5e-2 { t.Errorf("Mean mismatch. Want %v, got %v.", newNormal.mu[i], v) } } var sigma mat64.SymDense sigma.FromCholesky(&newNormal.chol) if !mat64.EqualApprox(&sigma, subEstCov, 1e-1) { t.Errorf("Covariance mismatch. Want:\n%0.8v\nGot:\n%0.8v\n", subEstCov, sigma) } } }
func resizeSymDense(m *mat64.SymDense, dim int) *mat64.SymDense { if m == nil || cap(m.RawSymmetric().Data) < dim*dim { return mat64.NewSymDense(dim, nil) } return mat64.NewSymDense(dim, m.RawSymmetric().Data[:dim*dim]) }
func TestMarginalSingle(t *testing.T) { for _, test := range []struct { mu []float64 sigma *mat64.SymDense }{ { mu: []float64{2, 3, 4}, sigma: mat64.NewSymDense(3, []float64{2, 0.5, 3, 0.5, 1, 0.6, 3, 0.6, 10}), }, { mu: []float64{2, 3, 4, 5}, sigma: mat64.NewSymDense(4, []float64{2, 0.5, 3, 0.1, 0.5, 1, 0.6, 0.2, 3, 0.6, 10, 0.3, 0.1, 0.2, 0.3, 3}), }, } { normal, ok := NewNormal(test.mu, test.sigma, nil) if !ok { t.Fatalf("Bad test, covariance matrix not positive definite") } // Verify with nil Sigma. normal.sigma = nil for i, mean := range test.mu { norm := normal.MarginalNormalSingle(i, nil) if norm.Mean() != mean { t.Errorf("Mean mismatch nil Sigma, idx %v: want %v, got %v.", i, mean, norm.Mean()) } std := math.Sqrt(test.sigma.At(i, i)) if math.Abs(norm.StdDev()-std) > 1e-14 { t.Errorf("StdDev mismatch nil Sigma, idx %v: want %v, got %v.", i, std, norm.StdDev()) } } // Verify with non-nil Sigma. normal.setSigma() for i, mean := range test.mu { norm := normal.MarginalNormalSingle(i, nil) if norm.Mean() != mean { t.Errorf("Mean mismatch non-nil Sigma, idx %v: want %v, got %v.", i, mean, norm.Mean()) } std := math.Sqrt(test.sigma.At(i, i)) if math.Abs(norm.StdDev()-std) > 1e-14 { t.Errorf("StdDev mismatch non-nil Sigma, idx %v: want %v, got %v.", i, std, norm.StdDev()) } } } // Test matching with TestMarginal. rnd := rand.New(rand.NewSource(1)) for cas := 0; cas < 10; cas++ { dim := rnd.Intn(10) + 1 mu := make([]float64, dim) for i := range mu { mu[i] = rnd.Float64() } x := make([]float64, dim*dim) for i := range x { x[i] = rnd.Float64() } mat := mat64.NewDense(dim, dim, x) var sigma mat64.SymDense sigma.SymOuterK(1, mat) normal, ok := NewNormal(mu, &sigma, nil) if !ok { t.Fatal("bad test") } for i := 0; i < dim; i++ { single := normal.MarginalNormalSingle(i, nil) mult, ok := normal.MarginalNormal([]int{i}, nil) if !ok { t.Fatal("bad test") } if math.Abs(single.Mean()-mult.Mean(nil)[0]) > 1e-14 { t.Errorf("Mean mismatch") } if math.Abs(single.Variance()-mult.CovarianceMatrix(nil).At(0, 0)) > 1e-14 { t.Errorf("Variance mismatch") } } } }