func hasaWithTag(qs graph.QuadStore, tag string, target string) *HasA { and := NewAnd(qs) obj := qs.FixedIterator() obj.Add(qs.ValueOf(target)) obj.Tagger().Add(tag) and.AddSubIterator(NewLinksTo(qs, obj, quad.Object)) pred := qs.FixedIterator() pred.Add(qs.ValueOf("status")) and.AddSubIterator(NewLinksTo(qs, pred, quad.Predicate)) return NewHasA(qs, and, quad.Subject) }
func buildHas(qs graph.QuadStore, via interface{}, in graph.Iterator, reverse bool, nodes []quad.Value) graph.Iterator { viaIter := buildViaPath(qs, via). BuildIterator() ends := func() graph.Iterator { if len(nodes) == 0 { return qs.NodesAllIterator() } fixed := qs.FixedIterator() for _, n := range nodes { fixed.Add(qs.ValueOf(n)) } return fixed }() start, goal := quad.Subject, quad.Object if reverse { start, goal = goal, start } trail := iterator.NewLinksTo(qs, viaIter, quad.Predicate) dest := iterator.NewLinksTo(qs, ends, goal) // If we were given nodes, intersecting with them first will // be extremely cheap-- otherwise, it will be the most expensive // (requiring iteration over all nodes). We have enough info to // make this optimization now since intersections are commutative if len(nodes) == 0 { // Where dest involves an All iterator. route := join(qs, trail, dest) has := iterator.NewHasA(qs, route, start) return join(qs, in, has) } // This looks backwards. That's OK-- see the note above. route := join(qs, dest, trail) has := iterator.NewHasA(qs, route, start) return join(qs, has, in) }
func buildIteratorFromValue(val otto.Value, qs graph.QuadStore) graph.Iterator { if val.IsNull() || val.IsUndefined() { return qs.NodesAllIterator() } if val.IsPrimitive() { thing, _ := val.Export() switch v := thing.(type) { case string: it := qs.FixedIterator() it.Add(qs.ValueOf(v)) return it default: glog.Errorln("Trying to build unknown primitive value.") } } switch val.Class() { case "Object": return buildIteratorTree(val.Object(), qs) case "Array": // Had better be an array of strings strings := stringsFrom(val.Object()) it := qs.FixedIterator() for _, x := range strings { it.Add(qs.ValueOf(x)) } return it case "Number": fallthrough case "Boolean": fallthrough case "Date": fallthrough case "String": it := qs.FixedIterator() it.Add(qs.ValueOf(val.String())) return it default: glog.Errorln("Trying to handle unsupported Javascript value.") return iterator.NewNull() } }
func buildIteratorTree(tree *peg.ExpressionTree, qs graph.QuadStore) graph.Iterator { switch tree.Name { case "Start": return buildIteratorTree(tree.Children[0], qs) case "NodeIdentifier": var out graph.Iterator nodeID := getIdentString(tree) if tree.Children[0].Name == "Variable" { allIt := qs.NodesAllIterator() allIt.Tagger().Add(nodeID) out = allIt } else { n := nodeID if tree.Children[0].Children[0].Name == "ColonIdentifier" { n = nodeID[1:] } fixed := qs.FixedIterator() fixed.Add(qs.ValueOf(n)) out = fixed } return out case "PredIdentifier": i := 0 if tree.Children[0].Name == "Reverse" { //Taken care of below i++ } it := buildIteratorTree(tree.Children[i], qs) lto := iterator.NewLinksTo(qs, it, quad.Predicate) return lto case "RootConstraint": constraintCount := 0 and := iterator.NewAnd() for _, c := range tree.Children { switch c.Name { case "NodeIdentifier": fallthrough case "Constraint": it := buildIteratorTree(c, qs) and.AddSubIterator(it) constraintCount++ continue default: continue } } return and case "Constraint": var hasa *iterator.HasA topLevelDir := quad.Subject subItDir := quad.Object subAnd := iterator.NewAnd() isOptional := false for _, c := range tree.Children { switch c.Name { case "PredIdentifier": if c.Children[0].Name == "Reverse" { topLevelDir = quad.Object subItDir = quad.Subject } it := buildIteratorTree(c, qs) subAnd.AddSubIterator(it) continue case "PredicateKeyword": switch c.Children[0].Name { case "OptionalKeyword": isOptional = true } case "NodeIdentifier": fallthrough case "RootConstraint": it := buildIteratorTree(c, qs) l := iterator.NewLinksTo(qs, it, subItDir) subAnd.AddSubIterator(l) continue default: continue } } hasa = iterator.NewHasA(qs, subAnd, topLevelDir) if isOptional { optional := iterator.NewOptional(hasa) return optional } return hasa default: return &iterator.Null{} } panic("Not reached") }
func buildIteratorTreeHelper(obj *otto.Object, qs graph.QuadStore, base graph.Iterator) graph.Iterator { it := base // TODO: Better error handling var subIt graph.Iterator if prev, _ := obj.Get("_gremlin_prev"); !prev.IsObject() { subIt = base } else { subIt = buildIteratorTreeHelper(prev.Object(), qs, base) } stringArgs := propertiesOf(obj, "string_args") val, _ := obj.Get("_gremlin_type") switch val.String() { case "vertex": if len(stringArgs) == 0 { it = qs.NodesAllIterator() } else { fixed := qs.FixedIterator() for _, name := range stringArgs { fixed.Add(qs.ValueOf(name)) } it = fixed } case "tag": it = subIt for _, tag := range stringArgs { it.Tagger().Add(tag) } case "save": all := qs.NodesAllIterator() if len(stringArgs) > 2 || len(stringArgs) == 0 { return iterator.NewNull() } if len(stringArgs) == 2 { all.Tagger().Add(stringArgs[1]) } else { all.Tagger().Add(stringArgs[0]) } predFixed := qs.FixedIterator() predFixed.Add(qs.ValueOf(stringArgs[0])) subAnd := iterator.NewAnd() subAnd.AddSubIterator(iterator.NewLinksTo(qs, predFixed, quad.Predicate)) subAnd.AddSubIterator(iterator.NewLinksTo(qs, all, quad.Object)) hasa := iterator.NewHasA(qs, subAnd, quad.Subject) and := iterator.NewAnd() and.AddSubIterator(hasa) and.AddSubIterator(subIt) it = and case "saver": all := qs.NodesAllIterator() if len(stringArgs) > 2 || len(stringArgs) == 0 { return iterator.NewNull() } if len(stringArgs) == 2 { all.Tagger().Add(stringArgs[1]) } else { all.Tagger().Add(stringArgs[0]) } predFixed := qs.FixedIterator() predFixed.Add(qs.ValueOf(stringArgs[0])) subAnd := iterator.NewAnd() subAnd.AddSubIterator(iterator.NewLinksTo(qs, predFixed, quad.Predicate)) subAnd.AddSubIterator(iterator.NewLinksTo(qs, all, quad.Subject)) hasa := iterator.NewHasA(qs, subAnd, quad.Object) and := iterator.NewAnd() and.AddSubIterator(hasa) and.AddSubIterator(subIt) it = and case "has": fixed := qs.FixedIterator() if len(stringArgs) < 2 { return iterator.NewNull() } for _, name := range stringArgs[1:] { fixed.Add(qs.ValueOf(name)) } predFixed := qs.FixedIterator() predFixed.Add(qs.ValueOf(stringArgs[0])) subAnd := iterator.NewAnd() subAnd.AddSubIterator(iterator.NewLinksTo(qs, predFixed, quad.Predicate)) subAnd.AddSubIterator(iterator.NewLinksTo(qs, fixed, quad.Object)) hasa := iterator.NewHasA(qs, subAnd, quad.Subject) and := iterator.NewAnd() and.AddSubIterator(hasa) and.AddSubIterator(subIt) it = and case "morphism": it = base case "and": arg, _ := obj.Get("_gremlin_values") firstArg, _ := arg.Object().Get("0") if !isVertexChain(firstArg.Object()) { return iterator.NewNull() } argIt := buildIteratorTree(firstArg.Object(), qs) and := iterator.NewAnd() and.AddSubIterator(subIt) and.AddSubIterator(argIt) it = and case "back": arg, _ := obj.Get("_gremlin_back_chain") argIt := buildIteratorTree(arg.Object(), qs) and := iterator.NewAnd() and.AddSubIterator(subIt) and.AddSubIterator(argIt) it = and case "is": fixed := qs.FixedIterator() for _, name := range stringArgs { fixed.Add(qs.ValueOf(name)) } and := iterator.NewAnd() and.AddSubIterator(fixed) and.AddSubIterator(subIt) it = and case "or": arg, _ := obj.Get("_gremlin_values") firstArg, _ := arg.Object().Get("0") if !isVertexChain(firstArg.Object()) { return iterator.NewNull() } argIt := buildIteratorTree(firstArg.Object(), qs) or := iterator.NewOr() or.AddSubIterator(subIt) or.AddSubIterator(argIt) it = or case "both": // Hardly the most efficient pattern, but the most general. // Worth looking into an Optimize() optimization here. clone := subIt.Clone() it1 := buildInOutIterator(obj, qs, subIt, false) it2 := buildInOutIterator(obj, qs, clone, true) or := iterator.NewOr() or.AddSubIterator(it1) or.AddSubIterator(it2) it = or case "out": it = buildInOutIterator(obj, qs, subIt, false) case "follow": // Follow a morphism arg, _ := obj.Get("_gremlin_values") firstArg, _ := arg.Object().Get("0") if isVertexChain(firstArg.Object()) { return iterator.NewNull() } it = buildIteratorTreeHelper(firstArg.Object(), qs, subIt) case "followr": // Follow a morphism arg, _ := obj.Get("_gremlin_followr") if isVertexChain(arg.Object()) { return iterator.NewNull() } it = buildIteratorTreeHelper(arg.Object(), qs, subIt) case "in": it = buildInOutIterator(obj, qs, subIt, true) } return it }