func GetPublicKey(r IpfsRouting, ctx context.Context, pkhash []byte) (ci.PubKey, error) { if dht, ok := r.(PubKeyFetcher); ok { // If we have a DHT as our routing system, use optimized fetcher return dht.GetPublicKey(ctx, peer.ID(pkhash)) } else { key := key.Key("/pk/" + string(pkhash)) pkval, err := r.GetValue(ctx, key) if err != nil { return nil, err } // get PublicKey from node.Data return ci.UnmarshalPublicKey(pkval) } }
// runHandshake performs initial communication over insecure channel to share // keys, IDs, and initiate communication, assigning all necessary params. // requires the duplex channel to be a msgio.ReadWriter (for framed messaging) func (s *secureSession) runHandshake() error { ctx, cancel := context.WithTimeout(s.ctx, HandshakeTimeout) // remove defer cancel() // ============================================================================= // step 1. Propose -- propose cipher suite + send pubkeys + nonce // Generate and send Hello packet. // Hello = (rand, PublicKey, Supported) nonceOut := make([]byte, nonceSize) _, err := rand.Read(nonceOut) if err != nil { return err } defer log.EventBegin(ctx, "secureHandshake", s).Done() s.local.permanentPubKey = s.localKey.GetPublic() myPubKeyBytes, err := s.local.permanentPubKey.Bytes() if err != nil { return err } proposeOut := new(pb.Propose) proposeOut.Rand = nonceOut proposeOut.Pubkey = myPubKeyBytes proposeOut.Exchanges = &SupportedExchanges proposeOut.Ciphers = &SupportedCiphers proposeOut.Hashes = &SupportedHashes // log.Debugf("1.0 Propose: nonce:%s exchanges:%s ciphers:%s hashes:%s", // nonceOut, SupportedExchanges, SupportedCiphers, SupportedHashes) // Send Propose packet (respects ctx) proposeOutBytes, err := writeMsgCtx(ctx, s.insecureM, proposeOut) if err != nil { return err } // Receive + Parse their Propose packet and generate an Exchange packet. proposeIn := new(pb.Propose) proposeInBytes, err := readMsgCtx(ctx, s.insecureM, proposeIn) if err != nil { return err } // log.Debugf("1.0.1 Propose recv: nonce:%s exchanges:%s ciphers:%s hashes:%s", // proposeIn.GetRand(), proposeIn.GetExchanges(), proposeIn.GetCiphers(), proposeIn.GetHashes()) // ============================================================================= // step 1.1 Identify -- get identity from their key // get remote identity s.remote.permanentPubKey, err = ci.UnmarshalPublicKey(proposeIn.GetPubkey()) if err != nil { return err } // get peer id s.remotePeer, err = peer.IDFromPublicKey(s.remote.permanentPubKey) if err != nil { return err } log.Debugf("1.1 Identify: %s Remote Peer Identified as %s", s.localPeer, s.remotePeer) // ============================================================================= // step 1.2 Selection -- select/agree on best encryption parameters // to determine order, use cmp(H(remote_pubkey||local_rand), H(local_pubkey||remote_rand)). oh1 := u.Hash(append(proposeIn.GetPubkey(), nonceOut...)) oh2 := u.Hash(append(myPubKeyBytes, proposeIn.GetRand()...)) order := bytes.Compare(oh1, oh2) if order == 0 { return ErrEcho // talking to self (same socket. must be reuseport + dialing self) } s.local.curveT, err = selectBest(order, SupportedExchanges, proposeIn.GetExchanges()) if err != nil { return err } s.local.cipherT, err = selectBest(order, SupportedCiphers, proposeIn.GetCiphers()) if err != nil { return err } s.local.hashT, err = selectBest(order, SupportedHashes, proposeIn.GetHashes()) if err != nil { return err } // we use the same params for both directions (must choose same curve) // WARNING: if they dont SelectBest the same way, this won't work... s.remote.curveT = s.local.curveT s.remote.cipherT = s.local.cipherT s.remote.hashT = s.local.hashT // log.Debugf("1.2 selection: exchange:%s cipher:%s hash:%s", // s.local.curveT, s.local.cipherT, s.local.hashT) // ============================================================================= // step 2. Exchange -- exchange (signed) ephemeral keys. verify signatures. // Generate EphemeralPubKey var genSharedKey ci.GenSharedKey s.local.ephemeralPubKey, genSharedKey, err = ci.GenerateEKeyPair(s.local.curveT) // Gather corpus to sign. selectionOut := new(bytes.Buffer) selectionOut.Write(proposeOutBytes) selectionOut.Write(proposeInBytes) selectionOut.Write(s.local.ephemeralPubKey) selectionOutBytes := selectionOut.Bytes() // log.Debugf("2.0 exchange: %v", selectionOutBytes) exchangeOut := new(pb.Exchange) exchangeOut.Epubkey = s.local.ephemeralPubKey exchangeOut.Signature, err = s.localKey.Sign(selectionOutBytes) if err != nil { return err } // Send Propose packet (respects ctx) if _, err := writeMsgCtx(ctx, s.insecureM, exchangeOut); err != nil { return err } // Receive + Parse their Exchange packet. exchangeIn := new(pb.Exchange) if _, err := readMsgCtx(ctx, s.insecureM, exchangeIn); err != nil { return err } // ============================================================================= // step 2.1. Verify -- verify their exchange packet is good. // get their ephemeral pub key s.remote.ephemeralPubKey = exchangeIn.GetEpubkey() selectionIn := new(bytes.Buffer) selectionIn.Write(proposeInBytes) selectionIn.Write(proposeOutBytes) selectionIn.Write(s.remote.ephemeralPubKey) selectionInBytes := selectionIn.Bytes() // log.Debugf("2.0.1 exchange recv: %v", selectionInBytes) // u.POut("Remote Peer Identified as %s\n", s.remote) sigOK, err := s.remote.permanentPubKey.Verify(selectionInBytes, exchangeIn.GetSignature()) if err != nil { // log.Error("2.1 Verify: failed: %s", err) return err } if !sigOK { err := errors.New("Bad signature!") // log.Error("2.1 Verify: failed: %s", err) return err } // log.Debugf("2.1 Verify: signature verified.") // ============================================================================= // step 2.2. Keys -- generate keys for mac + encryption // OK! seems like we're good to go. s.sharedSecret, err = genSharedKey(exchangeIn.GetEpubkey()) if err != nil { return err } // generate two sets of keys (stretching) k1, k2 := ci.KeyStretcher(s.local.cipherT, s.local.hashT, s.sharedSecret) // use random nonces to decide order. switch { case order > 0: // just break case order < 0: k1, k2 = k2, k1 // swap default: // we should've bailed before this. but if not, bail here. return ErrEcho } s.local.keys = k1 s.remote.keys = k2 // log.Debug("2.2 keys:\n\tshared: %v\n\tk1: %v\n\tk2: %v", // s.sharedSecret, s.local.keys, s.remote.keys) // ============================================================================= // step 2.3. MAC + Cipher -- prepare MAC + cipher if err := s.local.makeMacAndCipher(); err != nil { return err } if err := s.remote.makeMacAndCipher(); err != nil { return err } // log.Debug("2.3 mac + cipher.") // ============================================================================= // step 3. Finish -- send expected message to verify encryption works (send local nonce) // setup ETM ReadWriter w := NewETMWriter(s.insecure, s.local.cipher, s.local.mac) r := NewETMReader(s.insecure, s.remote.cipher, s.remote.mac) s.secure = msgio.Combine(w, r).(msgio.ReadWriteCloser) // log.Debug("3.0 finish. sending: %v", proposeIn.GetRand()) // send their Nonce. if _, err := s.secure.Write(proposeIn.GetRand()); err != nil { return fmt.Errorf("Failed to write Finish nonce: %s", err) } // read our Nonce nonceOut2 := make([]byte, len(nonceOut)) if _, err := io.ReadFull(s.secure, nonceOut2); err != nil { return fmt.Errorf("Failed to read Finish nonce: %s", err) } // log.Debug("3.0 finish.\n\texpect: %v\n\tactual: %v", nonceOut, nonceOut2) if !bytes.Equal(nonceOut, nonceOut2) { return fmt.Errorf("Failed to read our encrypted nonce: %s != %s", nonceOut2, nonceOut) } // Whew! ok, that's all folks. return nil }