func TestAcent(t *testing.T) { // matrix string in row order presentation Adata := [][]float64{ []float64{-7.44e-01, 1.11e-01, 1.29e+00, 2.62e+00, -1.82e+00}, []float64{4.59e-01, 7.06e-01, 3.16e-01, -1.06e-01, 7.80e-01}, []float64{-2.95e-02, -2.22e-01, -2.07e-01, -9.11e-01, -3.92e-01}, []float64{-7.75e-01, 1.03e-01, -1.22e+00, -5.74e-01, -3.32e-01}, []float64{-1.80e+00, 1.24e+00, -2.61e+00, -9.31e-01, -6.38e-01}} bdata := []float64{ 8.38e-01, 9.92e-01, 9.56e-01, 6.14e-01, 6.56e-01, 3.57e-01, 6.36e-01, 5.08e-01, 8.81e-03, 7.08e-02} // these are solution obtained from running cvxopt acent.py with above data solData := []float64{-11.59728373909344512, -1.35196389161339936, 7.21894899350256303, -3.29159917142051528, 4.90454147385329176} ntData := []float64{ 1.5163484265903457, 1.2433928210771914, 1.0562922103520955, 0.8816246051011607, 0.7271128861543598, 0.42725003346248974, 0.0816777301914883, 0.0005458037072843131, 1.6259980735305693e-10} b := matrix.FloatVector(bdata) Al := matrix.FloatMatrixFromTable(Adata, matrix.RowOrder) Au := matrix.Scale(Al, -1.0) A := matrix.FloatZeros(2*Al.Rows(), Al.Cols()) A.SetSubMatrix(0, 0, Al) A.SetSubMatrix(Al.Rows(), 0, Au) x, nt, err := acent(A, b, 10) if err != nil { t.Logf("Acent error: %s", err) t.Fail() } solref := matrix.FloatVector(solData) ntref := matrix.FloatVector(ntData) soldf := matrix.Minus(x, solref) ntdf := matrix.Minus(matrix.FloatVector(nt), ntref) solNrm := blas.Nrm2Float(soldf) ntNrm := blas.Nrm2Float(ntdf) t.Logf("x [diff=%.2e]:\n%v\n", solNrm, x) t.Logf("nt [diff=%.2e]:\n%v\n", ntNrm, nt) if solNrm > TOL { t.Log("solution deviates too much from expected\n") t.Fail() } }
func TestUpdateTrmMV(t *testing.T) { //bM := 5 bN := 8 //bP := 4 nb := 4 X := matrix.FloatNormal(bN, 1) //B := matrix.FloatNormal(bP, bN) Y := X.Copy() C0 := matrix.FloatZeros(bN, bN) C2 := matrix.FloatZeros(bN, bN) C1 := matrix.FloatZeros(bN, bN) Xr := X.FloatArray() Yr := Y.FloatArray() C1r := C1.FloatArray() C0r := C0.FloatArray() C2r := C2.FloatArray() // no transpose DRankMV(C1r, Xr, Yr, 1.0, C1.LeadingIndex(), 1, 1, 0, bN, 0, bN, nb, nb) DTrmUpdMV(C0r, Xr, Yr, 1.0, LOWER, C0.LeadingIndex(), 1, 1, 0, bN, nb) DTrmUpdMV(C2r, Xr, Yr, 1.0, UPPER, C2.LeadingIndex(), 1, 1, 0, bN, nb) t.Logf("C1:\n%v\nC0:\n%v\nC2:\n%v\n", C1, C0, C2) // C0 == C2.T t.Logf("C0 == C2.T: %v\n", C0.AllClose(C2.Transpose())) // C1 == C1 - C2 + C0.T Cn := matrix.Minus(C1, C2) Cn.Plus(C0.Transpose()) t.Logf("C1 == C1 - C2 + C0.T: %v\n", Cn.AllClose(C1)) }
func (m *mVariable) Verify(dataline string) float64 { refdata, err := matrix.FloatParse(dataline) if err != nil { fmt.Printf("parse error: %s", err) return 0.0 } return blas.Nrm2Float(matrix.Minus(m.mtx, refdata)) }
func (m *mVariable) ShowError(dataline string) { refdata, err := matrix.FloatParse(dataline) if err != nil { fmt.Printf("parse error: %s", err) return } df := matrix.Minus(m.mtx, refdata) emtx, _ := matrix.FloatMatrixStacked(matrix.StackRight, m.mtx, refdata, df) fmt.Printf("my data | ref.data | diff \n%v\n", emtx.ToString(spformat)) }
func (u *epigraph) ShowError(line string) { lpar := strings.Index(line, "[") rpar := strings.LastIndex(line, "]") mstart := strings.Index(line, "{") refval, _ := matrix.FloatParse(line[mstart:rpar]) fval, _ := strconv.ParseFloat(strings.Trim(line[lpar+1:mstart], " "), 64) df := matrix.Minus(u.m(), refval) em, _ := matrix.FloatMatrixStacked(matrix.StackRight, u.m(), refval, df) fmt.Printf("my data | ref.data | diff \n%v\n", em.ToString("%.4e")) d := u.t() - fval fmt.Printf("/%.4e/ | /%.4e/ | /%4e/\n", u.t(), fval, d) }
// Implement Verifiable interface func (u *epigraph) Verify(line string) float64 { diff := 0.0 lpar := strings.Index(line, "[") rpar := strings.LastIndex(line, "]") mstart := strings.Index(line, "{") refval, _ := matrix.FloatParse(line[mstart:rpar]) fval, _ := strconv.ParseFloat(strings.Trim(line[lpar+1:mstart], " "), 64) diff += blas.Nrm2Float(matrix.Minus(refval, u.m())) d := u.t() - fval diff += d * d return diff }
func TestUpdateTrmLower(t *testing.T) { //bM := 5 bN := 8 bP := 4 nb := 4 A := matrix.FloatNormal(bN, bP) //B := matrix.FloatNormal(bP, bN) B := A.Transpose() C0 := matrix.FloatZeros(bN, bN) C2 := matrix.FloatZeros(bN, bN) C1 := matrix.FloatZeros(bN, bN) Ar := A.FloatArray() Br := B.FloatArray() C1r := C1.FloatArray() C0r := C0.FloatArray() C2r := C2.FloatArray() // no transpose DMult(C1r, Ar, Br, 2.0, 1.0, NOTRANS, C1.LeadingIndex(), A.LeadingIndex(), B.LeadingIndex(), bP, 0, bN, 0, bN, nb, nb, nb) DTrmUpdBlk(C0r, Ar, Br, 2.0, 1.0, LOWER, C0.LeadingIndex(), A.LeadingIndex(), B.LeadingIndex(), bP, 0, bN, nb, nb) DTrmUpdBlk(C2r, Ar, Br, 2.0, 1.0, UPPER, C2.LeadingIndex(), A.LeadingIndex(), B.LeadingIndex(), bP, 0, bN, nb, nb) //t.Logf("C1:\n%v\nC0:\n%v\nC2:\n%v\n", C1, C0, C2) // C0 == C2.T t.Logf("C0 == C2.T: %v\n", C0.AllClose(C2.Transpose())) // C1 == C1 - C2 + C0.T Cn := matrix.Minus(C1, C2) Cn.Plus(C0.Transpose()) t.Logf("C1 == C1 - C2 + C0.T: %v\n", Cn.AllClose(C1)) // B == A.T DMult(C1r, Ar, Ar, 2.0, 0.0, TRANSB, C1.LeadingIndex(), A.LeadingIndex(), A.LeadingIndex(), bP, 0, bN, 0, bN, nb, nb, nb) DTrmUpdBlk(C0r, Ar, Ar, 2.0, 0.0, LOWER|TRANSB, C0.LeadingIndex(), A.LeadingIndex(), A.LeadingIndex(), bP, 0, bN, nb, nb) DTrmUpdBlk(C2r, Ar, Ar, 2.0, 0.0, UPPER|TRANSB, C2.LeadingIndex(), A.LeadingIndex(), A.LeadingIndex(), bP, 0, bN, nb, nb) //t.Logf("TRANSB:\nC1:\n%v\nC0:\n%v\nC2:\n%v\n", C1, C0, C2) // C0 == C2.T t.Logf("B.T: C0 == C2.T: %v\n", C0.AllClose(C2.Transpose())) // C1 == C1 - C2 + C0.T Cn = matrix.Minus(C1, C2) Cn.Plus(C0.Transpose()) t.Logf("B.T: C1 == C1 - C2 + C0.T: %v\n", Cn.AllClose(C1)) // A == B.T DMult(C1r, Br, Br, 2.0, 0.0, TRANSA, C1.LeadingIndex(), B.LeadingIndex(), B.LeadingIndex(), bP, 0, bN, 0, bN, nb, nb, nb) DTrmUpdBlk(C0r, Br, Br, 2.0, 0.0, LOWER|TRANSA, C0.LeadingIndex(), B.LeadingIndex(), B.LeadingIndex(), bP, 0, bN, nb, nb) DTrmUpdBlk(C2r, Br, Br, 2.0, 0.0, UPPER|TRANSA, C2.LeadingIndex(), B.LeadingIndex(), B.LeadingIndex(), bP, 0, bN, nb, nb) //t.Logf("TRANSA:\nC1:\n%v\nC0:\n%v\nC2:\n%v\n", C1, C0, C2) // C0 == C2.T t.Logf("A.T: C0 == C2.T: %v\n", C0.AllClose(C2.Transpose())) // C1 == C1 - C2 + C0.T Cn = matrix.Minus(C1, C2) Cn.Plus(C0.Transpose()) t.Logf("A.T: C1 == C1 - C2 + C0.T: %v\n", Cn.AllClose(C1)) // A == B.T, B == A.T DMult(C1r, Br, Ar, 2.0, 0.0, TRANSA|TRANSB, C1.LeadingIndex(), B.LeadingIndex(), A.LeadingIndex(), bP, 0, bN, 0, bN, nb, nb, nb) DTrmUpdBlk(C0r, Br, Ar, 2.0, 0.0, LOWER|TRANSA|TRANSB, C0.LeadingIndex(), B.LeadingIndex(), A.LeadingIndex(), bP, 0, bN, nb, nb) DTrmUpdBlk(C2r, Br, Ar, 2.0, 0.0, UPPER|TRANSA|TRANSB, C2.LeadingIndex(), B.LeadingIndex(), A.LeadingIndex(), bP, 0, bN, nb, nb) //t.Logf("TRANSA|TRANSB:\nC1:\n%v\nC0:\n%v\nC2:\n%v\n", C1, C0, C2) // C0 == C2.T t.Logf("A.T, B.T: C0 == C2.T: %v\n", C0.AllClose(C2.Transpose())) // C1 == C1 - C2 + C0.T Cn = matrix.Minus(C1, C2) Cn.Plus(C0.Transpose()) t.Logf("A.T, B.T: C1 == C1 - C2 + C0.T: %v\n", Cn.AllClose(C1)) }
func (u *matrixVar) ShowError(dataline string) { refval, _ := matrix.FloatParse(dataline) em := matrix.Minus(u.val, refval) r, _ := matrix.FloatMatrixStacked(matrix.StackRight, u.val, refval, em) fmt.Printf("my data | ref.data | diff \n%v\n", r.ToString("%.4e")) }
func (u *matrixVar) Verify(dataline string) float64 { diff := 0.0 refval, _ := matrix.FloatParse(dataline) diff += blas.Nrm2Float(matrix.Minus(u.val, refval)) return diff }
// Computes analytic center of A*x <= b with A m by n of rank n. // We assume that b > 0 and the feasible set is bounded. func acent(A, b *matrix.FloatMatrix, niters int) (x *matrix.FloatMatrix, ntdecrs []float64, err error) { err = nil if niters <= 0 { niters = MAXITERS } ntdecrs = make([]float64, 0, niters) if A.Rows() != b.Rows() { return nil, nil, errors.New("A.Rows() != b.Rows()") } m, n := A.Size() x = matrix.FloatZeros(n, 1) H := matrix.FloatZeros(n, n) // Helper m*n matrix Dmn := matrix.FloatZeros(m, n) for i := 0; i < niters; i++ { // Gradient is g = A^T * (1.0/(b - A*x)). d = 1.0/(b - A*x) // d is m*1 matrix, g is n*1 matrix d := matrix.Minus(b, matrix.Times(A, x)).Inv() g := matrix.Times(A.Transpose(), d) // Hessian is H = A^T * diag(1./(b-A*x))^2 * A. // in the original python code expression d[:,n*[0]] creates // a m*n matrix where each column is copy of column 0. // We do it here manually. for i := 0; i < n; i++ { Dmn.SetColumn(i, d) } // Function mul creates element wise product of matrices. Asc := matrix.Mul(Dmn, A) blas.SyrkFloat(Asc, H, 1.0, 0.0, linalg.OptTrans) // Newton step is v = H^-1 * g. v := matrix.Scale(g, -1.0) PosvFloat(H, v) // Directional derivative and Newton decrement. lam := blas.DotFloat(g, v) ntdecrs = append(ntdecrs, math.Sqrt(-lam)) if ntdecrs[len(ntdecrs)-1] < TOL { return x, ntdecrs, err } // Backtracking line search. // y = d .* A*v y := matrix.Mul(d, matrix.Times(A, v)) step := 1.0 for 1-step*y.Max() < 0 { step *= BETA } search: for { // t = -step*y + 1 [e.g. t = 1 - step*y] t := matrix.Scale(y, -step).Add(1.0) // ts = sum(log(1-step*y)) ts := t.Log().Sum() if -ts < ALPHA*step*lam { break search } step *= BETA } v.Scale(step) x.Plus(v) } // no solution !! err = errors.New(fmt.Sprintf("Iteration %d exhausted\n", niters)) return x, ntdecrs, err }