// Solves a pair of primal and dual cone programs // // minimize c'*x // subject to G*x + s = h // A*x = b // s >= 0 // // maximize -h'*z - b'*y // subject to G'*z + A'*y + c = 0 // z >= 0. // // The inequalities are with respect to a cone C defined as the Cartesian // product of N + M + 1 cones: // // C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}. // // The first cone C_0 is the nonnegative orthant of dimension ml. // The next N cones are second order cones of dimension mq[0], ..., // mq[N-1]. The second order cone of dimension m is defined as // // { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }. // // The next M cones are positive semidefinite cones of order ms[0], ..., // ms[M-1] >= 0. // func ConeLp(c, G, h, A, b *matrix.FloatMatrix, dims *DimensionSet, solopts *SolverOptions, primalstart, dualstart *FloatMatrixSet) (sol *Solution, err error) { err = nil const EXPON = 3 const STEP = 0.99 sol = &Solution{Unknown, nil, nil, nil, nil, nil, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0} //var primalstart *FloatMatrixSet = nil //var dualstart *FloatMatrixSet = nil var refinement int if solopts.Refinement > 0 { refinement = solopts.Refinement } else { refinement = 0 if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 { refinement = 1 } } feasTolerance := FEASTOL absTolerance := ABSTOL relTolerance := RELTOL if solopts.FeasTol > 0.0 { feasTolerance = solopts.FeasTol } if solopts.AbsTol > 0.0 { absTolerance = solopts.AbsTol } if solopts.RelTol > 0.0 { relTolerance = solopts.RelTol } solvername := solopts.KKTSolverName if len(solvername) == 0 { if dims != nil && (len(dims.At("q")) > 0 || len(dims.At("s")) > 0) { solvername = "qr" } else { solvername = "chol2" } } if c == nil || c.Cols() > 1 { err = errors.New("'c' must be matrix with 1 column") return } if h == nil || h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = DSetNew("l", "q", "s") dims.Set("l", []int{h.Rows()}) } if err = checkConeLpDimensions(dims); err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_diag := dims.Sum("l", "q", "s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } // Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G. indq := make([]int, 0, 100) indq = append(indq, dims.At("l")[0]) for _, k := range dims.At("q") { indq = append(indq, indq[len(indq)-1]+k) } // Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G. inds := make([]int, 0, 100) inds = append(inds, indq[len(indq)-1]) for _, k := range dims.At("s") { inds = append(inds, inds[len(inds)-1]+k*k) } if G != nil && !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } Gf := func(x, y *matrix.FloatMatrix, alpha, beta float64, opts ...la.Option) error { return sgemv(G, x, y, alpha, beta, dims, opts...) } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } Af := func(x, y *matrix.FloatMatrix, alpha, beta float64, opts ...la.Option) error { return blas.GemvFloat(A, x, y, alpha, beta, opts...) } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } // kktsolver(W) returns a routine for solving 3x3 block KKT system // // [ 0 A' G'*W^{-1} ] [ ux ] [ bx ] // [ A 0 0 ] [ uy ] = [ by ]. // [ G 0 -W' ] [ uz ] [ bz ] var factor kktFactor var kktsolver kktFactor = nil if kktfunc, ok := solvers[solvername]; ok { // kkt function returns us problem spesific factor function. factor, err = kktfunc(G, dims, A, 0) // solver is kktsolver = func(W *FloatMatrixSet, H, Df *matrix.FloatMatrix) (kktFunc, error) { return factor(W, nil, nil) } } else { err = errors.New(fmt.Sprintf("solver '%s' not known", solvername)) return } // res() evaluates residual in 5x5 block KKT system // // [ vx ] [ 0 ] [ 0 A' G' c ] [ ux ] // [ vy ] [ 0 ] [-A 0 0 b ] [ uy ] // [ vz ] += [ W'*us ] - [-G 0 0 h ] [ W^{-1}*uz ] // [ vtau ] [ dg*ukappa ] [-c' -b' -h' 0 ] [ utau/dg ] // // vs += lmbda o (dz + ds) // vkappa += lmbdg * (dtau + dkappa). ws3 := matrix.FloatZeros(cdim, 1) wz3 := matrix.FloatZeros(cdim, 1) // res := func(ux, uy, uz, utau, us, ukappa, vx, vy, vz, vtau, vs, vkappa *matrix.FloatMatrix, W *FloatMatrixSet, dg float64, lmbda *matrix.FloatMatrix) (err error) { err = nil // vx := vx - A'*uy - G'*W^{-1}*uz - c*utau/dg Af(uy, vx, -1.0, 1.0, la.OptTrans) //fmt.Printf("post-Af vx=\n%v\n", vx) blas.Copy(uz, wz3) scale(wz3, W, false, true) Gf(wz3, vx, -1.0, 1.0, la.OptTrans) blas.AxpyFloat(c, vx, -utau.Float()/dg) // vy := vy + A*ux - b*utau/dg Af(ux, vy, 1.0, 1.0) blas.AxpyFloat(b, vy, -utau.Float()/dg) // vz := vz + G*ux - h*utau/dg + W'*us Gf(ux, vz, 1.0, 1.0) blas.AxpyFloat(h, vz, -utau.Float()/dg) blas.Copy(us, ws3) scale(ws3, W, true, false) blas.AxpyFloat(ws3, vz, 1.0) // vtau := vtau + c'*ux + b'*uy + h'*W^{-1}*uz + dg*ukappa var vtauplus float64 = dg*ukappa.Float() + blas.DotFloat(c, ux) + blas.DotFloat(b, uy) + sdot(h, wz3, dims, 0) vtau.SetValue(vtau.Float() + vtauplus) // vs := vs + lmbda o (uz + us) blas.Copy(us, ws3) blas.AxpyFloat(uz, ws3, 1.0) sprod(ws3, lmbda, dims, 0, &la.SOpt{"diag", "D"}) blas.AxpyFloat(ws3, vs, 1.0) // vkappa += vkappa + lmbdag * (utau + ukappa) lscale := lmbda.GetIndex(lmbda.NumElements() - 1) var vkplus float64 = lscale * (utau.Float() + ukappa.Float()) vkappa.SetValue(vkappa.Float() + vkplus) return } resx0 := math.Max(1.0, math.Sqrt(blas.DotFloat(c, c))) resy0 := math.Max(1.0, math.Sqrt(blas.DotFloat(b, b))) resz0 := math.Max(1.0, snrm2(h, dims, 0)) // select initial points //fmt.Printf("** initial resx0=%.4f, resy0=%.4f, resz0=%.4f \n", resx0, resy0, resz0) x := c.Copy() blas.ScalFloat(x, 0.0) y := b.Copy() blas.ScalFloat(y, 0.0) s := matrix.FloatZeros(cdim, 1) z := matrix.FloatZeros(cdim, 1) dx := c.Copy() dy := b.Copy() ds := matrix.FloatZeros(cdim, 1) dz := matrix.FloatZeros(cdim, 1) // these are singleton matrix dkappa := matrix.FloatValue(0.0) dtau := matrix.FloatValue(0.0) var W *FloatMatrixSet var f kktFunc if primalstart == nil || dualstart == nil { // Factor // // [ 0 A' G' ] // [ A 0 0 ]. // [ G 0 -I ] // W = FloatSetNew("d", "di", "v", "beta", "r", "rti") dd := dims.At("l")[0] mat := matrix.FloatOnes(dd, 1) W.Set("d", mat) mat = matrix.FloatOnes(dd, 1) W.Set("di", mat) dq := len(dims.At("q")) W.Set("beta", matrix.FloatOnes(dq, 1)) for _, n := range dims.At("q") { vm := matrix.FloatZeros(n, 1) vm.SetIndex(0, 1.0) W.Append("v", vm) } for _, n := range dims.At("s") { W.Append("r", matrix.FloatIdentity(n)) W.Append("rti", matrix.FloatIdentity(n)) } f, err = kktsolver(W, nil, nil) if err != nil { fmt.Printf("kktsolver error: %s\n", err) return } } if primalstart == nil { // minimize || G * x - h ||^2 // subject to A * x = b // // by solving // // [ 0 A' G' ] [ x ] [ 0 ] // [ A 0 0 ] * [ dy ] = [ b ]. // [ G 0 -I ] [ -s ] [ h ] blas.ScalFloat(x, 0.0) blas.CopyFloat(y, dy) blas.CopyFloat(h, s) err = f(x, dy, s) if err != nil { fmt.Printf("f(x,dy,s): %s\n", err) return } blas.ScalFloat(s, -1.0) //fmt.Printf("** initial s:\n%v\n", s) } else { blas.Copy(primalstart.At("x")[0], x) blas.Copy(primalstart.At("s")[0], s) } // ts = min{ t | s + t*e >= 0 } ts, _ := maxStep(s, dims, 0, nil) if ts >= 0 && primalstart != nil { err = errors.New("initial s is not positive") return } if dualstart == nil { // minimize || z ||^2 // subject to G'*z + A'*y + c = 0 // // by solving // // [ 0 A' G' ] [ dx ] [ -c ] // [ A 0 0 ] [ y ] = [ 0 ]. // [ G 0 -I ] [ z ] [ 0 ] blas.Copy(c, dx) blas.ScalFloat(dx, -1.0) blas.ScalFloat(y, 0.0) err = f(dx, y, z) if err != nil { fmt.Printf("f(dx,y,z): %s\n", err) return } } else { if len(dualstart.At("y")) > 0 { blas.Copy(dualstart.At("y")[0], y) } blas.Copy(dualstart.At("z")[0], z) } // ts = min{ t | z + t*e >= 0 } tz, _ := maxStep(z, dims, 0, nil) if tz >= 0 && dualstart != nil { err = errors.New("initial z is not positive") return } nrms := snrm2(s, dims, 0) nrmz := snrm2(z, dims, 0) gap := 0.0 pcost := 0.0 dcost := 0.0 relgap := 0.0 if primalstart == nil && dualstart == nil { gap = sdot(s, z, dims, 0) pcost = blas.DotFloat(c, x) dcost = -blas.DotFloat(b, y) - sdot(h, z, dims, 0) if pcost < 0.0 { relgap = gap / -pcost } else if dcost > 0.0 { relgap = gap / dcost } else { relgap = math.NaN() } if ts <= 0 && tz < 0 && (gap <= absTolerance || (!math.IsNaN(relgap) && relgap <= relTolerance)) { // Constructed initial points happen to be feasible and optimal ind := dims.At("l")[0] + dims.Sum("q") for _, m := range dims.At("s") { symm(s, m, ind) symm(z, m, ind) ind += m * m } // rx = A'*y + G'*z + c rx := c.Copy() Af(y, rx, 1.0, 1.0, la.OptTrans) Gf(z, rx, 1.0, 1.0, la.OptTrans) resx := math.Sqrt(blas.Dot(rx, rx).Float()) // ry = b - A*x ry := b.Copy() Af(x, ry, -1.0, -1.0) resy := math.Sqrt(blas.Dot(ry, ry).Float()) // rz = s + G*x - h rz := matrix.FloatZeros(cdim, 1) Gf(x, rz, 1.0, 0.0) blas.AxpyFloat(s, rz, 1.0) blas.AxpyFloat(h, rz, -1.0) resz := snrm2(rz, dims, 0) pres := math.Max(resy/resy0, resz/resz0) dres := resx / resx0 cx := blas.Dot(c, x).Float() by := blas.Dot(b, y).Float() hz := sdot(h, z, dims, 0) sol.X = x sol.Y = y sol.S = s sol.Z = z sol.Result = FloatSetNew("x", "y", "s", "x") sol.Result.Append("x", x) sol.Result.Append("y", y) sol.Result.Append("s", s) sol.Result.Append("z", z) sol.Status = Optimal sol.Gap = gap sol.RelativeGap = relgap sol.PrimalObjective = cx sol.DualObjective = -(by + hz) sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz return } if ts >= -1e-8*math.Max(nrms, 1.0) { a := 1.0 + ts is := make([]int, 0) // indexes s[:dims['l']] is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) // indexes s[indq[:-1]] is = append(is, indq[:len(indq)-1]...) // indexes s[ind:ind+m*m:m+1] (diagonal) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) } for _, k := range is { s.SetIndex(k, a+s.GetIndex(k)) } //fmt.Printf("scaled s=\n%v\n", s.ConvertToString()) } if tz >= -1e-8*math.Max(nrmz, 1.0) { a := 1.0 + tz is := make([]int, 0) // indexes z[:dims['l']] is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) // indexes z[indq[:-1]] is = append(is, indq[:len(indq)-1]...) // indexes z[ind:ind+m*m:m+1] (diagonal) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) } for _, k := range is { z.SetIndex(k, a+z.GetIndex(k)) } //fmt.Printf("scaled z=\n%v\n", z.ConvertToString()) } } else if primalstart == nil && dualstart != nil { if ts >= -1e-8*math.Max(nrms, 1.0) { a := 1.0 + ts is := make([]int, 0) is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) is = append(is, indq[:len(indq)-1]...) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) } for _, k := range is { s.SetIndex(k, a+s.GetIndex(k)) } } } else if primalstart != nil && dualstart == nil { if tz >= -1e-8*math.Max(nrmz, 1.0) { a := 1.0 + tz is := make([]int, 0) is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) is = append(is, indq[:len(indq)-1]...) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) } for _, k := range is { z.SetIndex(k, a+z.GetIndex(k)) } } } tau := matrix.FloatValue(1.0) kappa := matrix.FloatValue(1.0) wkappa3 := matrix.FloatValue(0.0) rx := c.Copy() hrx := c.Copy() ry := b.Copy() hry := b.Copy() rz := matrix.FloatZeros(cdim, 1) hrz := matrix.FloatZeros(cdim, 1) sigs := matrix.FloatZeros(dims.Sum("s"), 1) sigz := matrix.FloatZeros(dims.Sum("s"), 1) lmbda := matrix.FloatZeros(cdim_diag+1, 1) lmbdasq := matrix.FloatZeros(cdim_diag+1, 1) gap = sdot(s, z, dims, 0) var x1, y1, z1 *matrix.FloatMatrix var dg, dgi float64 var th *matrix.FloatMatrix var WS fClosure var f3 kktFunc //fmt.Printf("preloop x=\n%v\n", x.ConvertToString()) //fmt.Printf("preloop z=\n%v\n", z.ConvertToString()) //fmt.Printf("preloop s=\n%v\n", s.ConvertToString()) for iter := 0; iter < solopts.MaxIter+1; iter++ { // hrx = -A'*y - G'*z Af(y, hrx, -1.0, 0.0, la.OptTrans) Gf(z, hrx, -1.0, 1.0, la.OptTrans) hresx := math.Sqrt(blas.DotFloat(hrx, hrx)) // rx = hrx - c*tau // = -A'*y - G'*z - c*tau blas.Copy(hrx, rx) err = blas.AxpyFloat(c, rx, -tau.Float()) resx := math.Sqrt(blas.DotFloat(rx, rx)) / tau.Float() // hry = A*x Af(x, hry, 1.0, 0.0) hresy := math.Sqrt(blas.DotFloat(hry, hry)) // ry = hry - b*tau // = A*x - b*tau blas.Copy(hry, ry) blas.AxpyFloat(b, ry, -tau.Float()) resy := math.Sqrt(blas.DotFloat(ry, ry)) / tau.Float() // hrz = s + G*x Gf(x, hrz, 1.0, 0.0) blas.AxpyFloat(s, hrz, 1.0) hresz := snrm2(hrz, dims, 0) // rz = hrz - h*tau // = s + G*x - h*tau blas.ScalFloat(rz, 0.0) blas.AxpyFloat(hrz, rz, 1.0) blas.AxpyFloat(h, rz, -tau.Float()) resz := snrm2(rz, dims, 0) / tau.Float() // rt = kappa + c'*x + b'*y + h'*z ' cx := blas.DotFloat(c, x) by := blas.DotFloat(b, y) hz := sdot(h, z, dims, 0) rt := kappa.Float() + cx + by + hz // Statistics for stopping criteria pcost = cx / tau.Float() dcost = -(by + hz) / tau.Float() if pcost < 0.0 { relgap = gap / -pcost } else if dcost > 0.0 { relgap = gap / dcost } else { relgap = math.NaN() } pres := math.Max(resy/resy0, resz/resz0) dres := resx / resx0 pinfres := math.NaN() if hz+by < 0.0 { pinfres = hresx / resx0 / (-hz - by) } dinfres := math.NaN() if cx < 0.0 { dinfres = math.Max(hresy/resy0, hresz/resz0) / (-cx) } if solopts.ShowProgress { if iter == 0 { // show headers of something fmt.Printf("% 10s% 12s% 10s% 8s% 7s % 5s\n", "pcost", "dcost", "gap", "pres", "dres", "k/t") } // show something fmt.Printf("%2d: % 8.4e % 8.4e % 4.0e% 7.0e% 7.0e% 7.0e\n", iter, pcost, dcost, gap, pres, dres, kappa.GetIndex(0)/tau.GetIndex(0)) } if (pres <= feasTolerance && dres <= feasTolerance && (gap <= absTolerance || (!math.IsNaN(relgap) && relgap <= relTolerance))) || iter == solopts.MaxIter { // done blas.ScalFloat(x, 1.0/tau.Float()) blas.ScalFloat(y, 1.0/tau.Float()) blas.ScalFloat(s, 1.0/tau.Float()) blas.ScalFloat(z, 1.0/tau.Float()) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(s, m, ind) symm(z, m, ind) ind += m * m } ts, _ = maxStep(s, dims, 0, nil) tz, _ = maxStep(z, dims, 0, nil) if iter == solopts.MaxIter { // MaxIterations exceeded if solopts.ShowProgress { fmt.Printf("No solution. Max iterations exceeded\n") } err = errors.New("No solution. Max iterations exceeded") sol.X = x sol.Y = y sol.S = s sol.Z = z sol.Result = FloatSetNew("x", "y", "s", "x") sol.Result.Append("x", x) sol.Result.Append("y", y) sol.Result.Append("s", s) sol.Result.Append("z", z) sol.Status = Unknown sol.Gap = gap sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = dcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz sol.PrimalResidualCert = pinfres sol.DualResidualCert = dinfres sol.Iterations = iter return } else { // Optimal if solopts.ShowProgress { fmt.Printf("Optimal solution.\n") } err = nil sol.X = x sol.Y = y sol.S = s sol.Z = z sol.Result = FloatSetNew("x", "y", "s", "x") sol.Result.Append("x", x) sol.Result.Append("y", y) sol.Result.Append("s", s) sol.Result.Append("z", z) sol.Status = Optimal sol.Gap = gap sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = dcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz sol.PrimalResidualCert = math.NaN() sol.DualResidualCert = math.NaN() sol.Iterations = iter return } } else if !math.IsNaN(pinfres) && pinfres <= feasTolerance { // Primal Infeasible if solopts.ShowProgress { fmt.Printf("Primal infeasible.\n") } err = errors.New("Primal infeasible") blas.ScalFloat(y, 1.0/(-hz-by)) blas.ScalFloat(z, 1.0/(-hz-by)) sol.X = nil sol.Y = nil sol.S = nil sol.Z = nil ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(z, m, ind) ind += m * m } tz, _ = maxStep(z, dims, 0, nil) sol.Status = PrimalInfeasible sol.Result = FloatSetNew("x", "y", "s", "x") sol.Result.Append("x", nil) sol.Result.Append("y", nil) sol.Result.Append("s", nil) sol.Result.Append("z", nil) sol.Gap = math.NaN() sol.RelativeGap = math.NaN() sol.PrimalObjective = math.NaN() sol.DualObjective = 1.0 sol.PrimalInfeasibility = math.NaN() sol.DualInfeasibility = math.NaN() sol.PrimalSlack = math.NaN() sol.DualSlack = -tz sol.PrimalResidualCert = pinfres sol.DualResidualCert = math.NaN() sol.Iterations = iter return } else if !math.IsNaN(dinfres) && dinfres <= feasTolerance { // Dual Infeasible if solopts.ShowProgress { fmt.Printf("Dual infeasible.\n") } err = errors.New("Primal infeasible") blas.ScalFloat(x, 1.0/(-cx)) blas.ScalFloat(s, 1.0/(-cx)) sol.X = nil sol.Y = nil sol.S = nil sol.Z = nil ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(s, m, ind) ind += m * m } ts, _ = maxStep(s, dims, 0, nil) sol.Status = PrimalInfeasible sol.Result = FloatSetNew("x", "y", "s", "x") sol.Result.Append("x", nil) sol.Result.Append("y", nil) sol.Result.Append("s", nil) sol.Result.Append("z", nil) sol.Gap = math.NaN() sol.RelativeGap = math.NaN() sol.PrimalObjective = 1.0 sol.DualObjective = math.NaN() sol.PrimalInfeasibility = math.NaN() sol.DualInfeasibility = math.NaN() sol.PrimalSlack = -ts sol.DualSlack = math.NaN() sol.PrimalResidualCert = math.NaN() sol.DualResidualCert = dinfres sol.Iterations = iter return } // Compute initial scaling W: // // W * z = W^{-T} * s = lambda // dg * tau = 1/dg * kappa = lambdag. if iter == 0 { W, err = computeScaling(s, z, lmbda, dims, 0) // dg = sqrt( kappa / tau ) // dgi = sqrt( tau / kappa ) // lambda_g = sqrt( tau * kappa ) // // lambda_g is stored in the last position of lmbda. dg = math.Sqrt(kappa.Float() / tau.Float()) dgi = math.Sqrt(float64(tau.Float() / kappa.Float())) lmbda.SetIndex(-1, math.Sqrt(float64(tau.Float()*kappa.Float()))) } // lmbdasq := lmbda o lmbda ssqr(lmbdasq, lmbda, dims, 0) lmbdasq.SetIndex(-1, lmbda.GetIndex(-1)*lmbda.GetIndex(-1)) // f3(x, y, z) solves // // [ 0 A' G' ] [ ux ] [ bx ] // [ A 0 0 ] [ uy ] = [ by ]. // [ G 0 -W'*W ] [ W^{-1}*uz ] [ bz ] // // On entry, x, y, z contain bx, by, bz. // On exit, they contain ux, uy, uz. // // Also solve // // [ 0 A' G' ] [ x1 ] [ c ] // [-A 0 0 ]*[ y1 ] = -dgi * [ b ]. // [-G 0 W'*W ] [ W^{-1}*z1 ] [ h ] f3, err = kktsolver(W, nil, nil) if err != nil { fmt.Printf("kktsolver error=%v\n", err) return } if iter == 0 { x1 = c.Copy() y1 = b.Copy() z1 = matrix.FloatZeros(cdim, 1) } blas.Copy(c, x1) blas.ScalFloat(x1, -1.0) blas.Copy(b, y1) blas.Copy(h, z1) err = f3(x1, y1, z1) //fmt.Printf("f3 result: x1=\n%v\nf3 result: z1=\n%v\n", x1, z1) blas.ScalFloat(x1, dgi) blas.ScalFloat(y1, dgi) blas.ScalFloat(z1, dgi) if err != nil { if iter == 0 && primalstart != nil && dualstart != nil { err = errors.New("Rank(A) < p or Rank([G; A]) < n") return } else { t_ := 1.0 / tau.Float() blas.ScalFloat(x, t_) blas.ScalFloat(y, t_) blas.ScalFloat(s, t_) blas.ScalFloat(z, t_) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(s, m, ind) symm(z, m, ind) ind += m * m } ts, _ = maxStep(s, dims, 0, nil) tz, _ = maxStep(z, dims, 0, nil) err = errors.New("Terminated (singular KKT matrix).") sol.X = x sol.Y = y sol.S = s sol.Z = z sol.Result = FloatSetNew("x", "y", "s", "x") sol.Result.Append("x", x) sol.Result.Append("y", y) sol.Result.Append("s", s) sol.Result.Append("z", z) sol.Status = Unknown sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = dcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz sol.Iterations = iter return } } // f6_no_ir(x, y, z, tau, s, kappa) solves // // [ 0 ] [ 0 A' G' c ] [ ux ] [ bx ] // [ 0 ] [ -A 0 0 b ] [ uy ] [ by ] // [ W'*us ] - [ -G 0 0 h ] [ W^{-1}*uz ] = -[ bz ] // [ dg*ukappa ] [ -c' -b' -h' 0 ] [ utau/dg ] [ btau ] // // lmbda o (uz + us) = -bs // lmbdag * (utau + ukappa) = -bkappa. // // On entry, x, y, z, tau, s, kappa contain bx, by, bz, btau, // bkappa. On exit, they contain ux, uy, uz, utau, ukappa. // th = W^{-T} * h if iter == 0 { th = matrix.FloatZeros(cdim, 1) } blas.Copy(h, th) scale(th, W, true, true) f6_no_ir := func(x, y, z, tau, s, kappa *matrix.FloatMatrix) (err error) { // Solve // // [ 0 A' G' 0 ] [ ux ] // [ -A 0 0 b ] [ uy ] // [ -G 0 W'*W h ] [ W^{-1}*uz ] // [ -c' -b' -h' k/t ] [ utau/dg ] // // [ bx ] // [ by ] // = [ bz - W'*(lmbda o\ bs) ] // [ btau - bkappa/tau ] // // us = -lmbda o\ bs - uz // ukappa = -bkappa/lmbdag - utau. // First solve // // [ 0 A' G' ] [ ux ] [ bx ] // [ A 0 0 ] [ uy ] = [ -by ] // [ G 0 -W'*W ] [ W^{-1}*uz ] [ -bz + W'*(lmbda o\ bs) ] err = nil // y := -y = -by blas.ScalFloat(y, -1.0) // s := -lmbda o\ s = -lmbda o\ bs err = sinv(s, lmbda, dims, 0) blas.ScalFloat(s, -1.0) // z := -(z + W'*s) = -bz + W'*(lambda o\ bs) blas.Copy(s, ws3) err = scale(ws3, W, true, false) blas.AxpyFloat(ws3, z, 1.0) blas.ScalFloat(z, -1.0) err = f3(x, y, z) // Combine with solution of // // [ 0 A' G' ] [ x1 ] [ c ] // [-A 0 0 ] [ y1 ] = -dgi * [ b ] // [-G 0 W'*W ] [ W^{-1}*dzl ] [ h ] // // to satisfy // // -c'*x - b'*y - h'*W^{-1}*z + dg*tau = btau - bkappa/tau. ' // , kappa[0] := -kappa[0] / lmbd[-1] = -bkappa / lmbdag kap_ := kappa.Float() tau_ := tau.Float() kap_ = -kap_ / lmbda.GetIndex(-1) // tau[0] = tau[0] + kappa[0] / dgi = btau[0] - bkappa / tau tau_ = tau_ + kap_/dgi //tau[0] = dgi * ( tau[0] + xdot(c,x) + ydot(b,y) + // misc.sdot(th, z, dims) ) / (1.0 + misc.sdot(z1, z1, dims)) //tau_ = tau_ + blas.DotFloat(c, x) + blas.DotFloat(b, y) + sdot(th, z, dims, 0) tau_ += blas.DotFloat(c, x) tau_ += blas.DotFloat(b, y) tau_ += sdot(th, z, dims, 0) tau_ = dgi * tau_ / (1.0 + sdot(z1, z1, dims, 0)) tau.SetValue(tau_) blas.AxpyFloat(x1, x, tau_) blas.AxpyFloat(y1, y, tau_) blas.AxpyFloat(z1, z, tau_) blas.AxpyFloat(z, s, -1.0) kap_ = kap_ - tau_ kappa.SetValue(kap_) return } // f6(x, y, z, tau, s, kappa) solves the same system as f6_no_ir, // but applies iterative refinement. Following variables part of f6-closure // and ~ 12 is the limit. We wrap them to a structure. if iter == 0 { if refinement > 0 || solopts.Debug { WS.wx = c.Copy() WS.wy = b.Copy() WS.wz = matrix.FloatZeros(cdim, 1) WS.ws = matrix.FloatZeros(cdim, 1) WS.wtau = matrix.FloatValue(0.0) WS.wkappa = matrix.FloatValue(0.0) } if refinement > 0 { WS.wx2 = c.Copy() WS.wy2 = b.Copy() WS.wz2 = matrix.FloatZeros(cdim, 1) WS.ws2 = matrix.FloatZeros(cdim, 1) WS.wtau2 = matrix.FloatValue(0.0) WS.wkappa2 = matrix.FloatValue(0.0) } } f6 := func(x, y, z, tau, s, kappa *matrix.FloatMatrix) error { var err error = nil if refinement > 0 || solopts.Debug { blas.Copy(x, WS.wx) blas.Copy(y, WS.wy) blas.Copy(z, WS.wz) blas.Copy(s, WS.ws) WS.wtau.SetValue(tau.Float()) WS.wkappa.SetValue(kappa.Float()) } err = f6_no_ir(x, y, z, tau, s, kappa) for i := 0; i < refinement; i++ { blas.Copy(WS.wx, WS.wx2) blas.Copy(WS.wy, WS.wy2) blas.Copy(WS.wz, WS.wz2) blas.Copy(WS.ws, WS.ws2) WS.wtau2.SetValue(WS.wtau.Float()) WS.wkappa2.SetValue(WS.wkappa.Float()) err = res(x, y, z, tau, s, kappa, WS.wx2, WS.wy2, WS.wz2, WS.wtau2, WS.ws2, WS.wkappa2, W, dg, lmbda) err = f6_no_ir(WS.wx2, WS.wy2, WS.wz2, WS.wtau2, WS.ws2, WS.wkappa2) blas.AxpyFloat(WS.wx2, x, 1.0) blas.AxpyFloat(WS.wy2, y, 1.0) blas.AxpyFloat(WS.wz2, z, 1.0) blas.AxpyFloat(WS.ws2, s, 1.0) tau.SetValue(tau.Float() + WS.wtau2.Float()) kappa.SetValue(kappa.Float() + WS.wkappa2.Float()) } if solopts.Debug { res(x, y, z, tau, s, kappa, WS.wx, WS.wy, WS.wz, WS.wtau, WS.ws, WS.wkappa, W, dg, lmbda) fmt.Printf("KKT residuals\n") } return err } var nrm float64 = blas.Nrm2(lmbda).Float() mu := math.Pow(nrm, 2.0) / (1.0 + float64(cdim_diag)) sigma := 0.0 var step, tt, tk float64 for i := 0; i < 2; i++ { // Solve // // [ 0 ] [ 0 A' G' c ] [ dx ] // [ 0 ] [ -A 0 0 b ] [ dy ] // [ W'*ds ] - [ -G 0 0 h ] [ W^{-1}*dz ] // [ dg*dkappa ] [ -c' -b' -h' 0 ] [ dtau/dg ] // // [ rx ] // [ ry ] // = - (1-sigma) [ rz ] // [ rtau ] // // lmbda o (dz + ds) = -lmbda o lmbda + sigma*mu*e // lmbdag * (dtau + dkappa) = - kappa * tau + sigma*mu // // ds = -lmbdasq if i is 0 // = -lmbdasq - dsa o dza + sigma*mu*e if i is 1 // dkappa = -lambdasq[-1] if i is 0 // = -lambdasq[-1] - dkappaa*dtaua + sigma*mu if i is 1. ind := dims.Sum("l", "q") ind2 := ind blas.Copy(lmbdasq, ds, &la.IOpt{"n", ind}) blas.ScalFloat(ds, 0.0, &la.IOpt{"offset", ind}) for _, m := range dims.At("s") { blas.Copy(lmbdasq, ds, &la.IOpt{"n", m}, &la.IOpt{"offsetx", ind2}, &la.IOpt{"offsety", ind}, &la.IOpt{"incy", m + 1}) ind += m * m ind2 += m } // dkappa[0] = lmbdasq[-1] dkappa.SetValue(lmbdasq.GetIndex(-1)) if i == 1 { blas.AxpyFloat(ws3, ds, 1.0) ind = dims.Sum("l", "q") is := make([]int, 0) is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) is = append(is, indq[:len(indq)-1]...) for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) } for _, k := range is { ds.SetIndex(k, ds.GetIndex(k)-sigma*mu) } dk_ := dkappa.Float() wk_ := wkappa3.Float() dkappa.SetValue(dk_ + wk_ - sigma*mu) } // (dx, dy, dz, dtau) = (1-sigma)*(rx, ry, rz, rt) blas.Copy(rx, dx) blas.ScalFloat(dx, 1.0-sigma) blas.Copy(ry, dy) blas.ScalFloat(dy, 1.0-sigma) blas.Copy(rz, dz) blas.ScalFloat(dz, 1.0-sigma) // dtau[0] = (1.0 - sigma) * rt dtau.SetValue((1.0 - sigma) * rt) err = f6(dx, dy, dz, dtau, ds, dkappa) // Save ds o dz and dkappa * dtau for Mehrotra correction if i == 0 { blas.Copy(ds, ws3) sprod(ws3, dz, dims, 0) wkappa3.SetValue(dtau.Float() * dkappa.Float()) } // Maximum step to boundary. // // If i is 1, also compute eigenvalue decomposition of the 's' // blocks in ds, dz. The eigenvectors Qs, Qz are stored in // dsk, dzk. The eigenvalues are stored in sigs, sigz. var ts, tz float64 scale2(lmbda, ds, dims, 0, false) scale2(lmbda, dz, dims, 0, false) if i == 0 { ts, _ = maxStep(ds, dims, 0, nil) tz, _ = maxStep(dz, dims, 0, nil) } else { ts, _ = maxStep(ds, dims, 0, sigs) tz, _ = maxStep(dz, dims, 0, sigz) } dt_ := dtau.Float() dk_ := dkappa.Float() tt = -dt_ / lmbda.GetIndex(-1) tk = -dk_ / lmbda.GetIndex(-1) t := maxvec([]float64{0.0, ts, tz, tt, tk}) if t == 0.0 { step = 1.0 } else { if i == 0 { step = math.Min(1.0, 1.0/t) } else { step = math.Min(1.0, STEP/t) } } if i == 0 { // sigma = (1 - step)^3 sigma = (1.0 - step) * (1.0 - step) * (1.0 - step) //sigma = math.Pow((1.0 - step), EXPON) } } //fmt.Printf("** tau = %.17f, kappa = %.17f\n", tau.Float(), kappa.Float()) //fmt.Printf("** step = %.17f, sigma = %.17f\n", step, sigma) // Update x, y blas.AxpyFloat(dx, x, step) blas.AxpyFloat(dy, y, step) // Replace 'l' and 'q' blocks of ds and dz with the updated // variables in the current scaling. // Replace 's' blocks of ds and dz with the factors Ls, Lz in a // factorization Ls*Ls', Lz*Lz' of the updated variables in the // current scaling. // // ds := e + step*ds for 'l' and 'q' blocks. // dz := e + step*dz for 'l' and 'q' blocks. blas.ScalFloat(ds, step, &la.IOpt{"n", dims.Sum("l", "q")}) blas.ScalFloat(dz, step, &la.IOpt{"n", dims.Sum("l", "q")}) is := make([]int, 0) is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) is = append(is, indq[:len(indq)-1]...) for _, k := range is { ds.SetIndex(k, 1.0+ds.GetIndex(k)) dz.SetIndex(k, 1.0+dz.GetIndex(k)) } // ds := H(lambda)^{-1/2} * ds and dz := H(lambda)^{-1/2} * dz. // // This replaces the 'l' and 'q' components of ds and dz with the // updated variables in the current scaling. // The 's' components of ds and dz are replaced with // // diag(lmbda_k)^{1/2} * Qs * diag(lmbda_k)^{1/2} // diag(lmbda_k)^{1/2} * Qz * diag(lmbda_k)^{1/2} scale2(lmbda, ds, dims, 0, true) scale2(lmbda, dz, dims, 0, true) // sigs := ( e + step*sigs ) ./ lambda for 's' blocks. // sigz := ( e + step*sigz ) ./ lambda for 's' blocks. blas.ScalFloat(sigs, step) blas.ScalFloat(sigz, step) sigs.Add(1.0) sigz.Add(1.0) sdimsum := dims.Sum("s") qdimsum := dims.Sum("l", "q") blas.TbsvFloat(lmbda, sigs, &la.IOpt{"n", sdimsum}, &la.IOpt{"k", 0}, &la.IOpt{"lda", 1}, &la.IOpt{"offseta", qdimsum}) blas.TbsvFloat(lmbda, sigz, &la.IOpt{"n", sdimsum}, &la.IOpt{"k", 0}, &la.IOpt{"lda", 1}, &la.IOpt{"offseta", qdimsum}) ind2 := qdimsum ind3 := 0 sdims := dims.At("s") for k := 0; k < len(sdims); k++ { m := sdims[k] for i := 0; i < m; i++ { a := math.Sqrt(sigs.GetIndex(ind3 + i)) blas.ScalFloat(ds, a, &la.IOpt{"offset", ind2 + m*i}, &la.IOpt{"n", m}) a = math.Sqrt(sigz.GetIndex(ind3 + i)) blas.ScalFloat(dz, a, &la.IOpt{"offset", ind2 + m*i}, &la.IOpt{"n", m}) } ind2 += m * m ind3 += m } err = updateScaling(W, lmbda, ds, dz) // For kappa, tau block: // // dg := sqrt( (kappa + step*dkappa) / (tau + step*dtau) ) // = dg * sqrt( (1 - step*tk) / (1 - step*tt) ) // // lmbda[-1] := sqrt((tau + step*dtau) * (kappa + step*dkappa)) // = lmbda[-1] * sqrt(( 1 - step*tt) * (1 - step*tk)) dg *= math.Sqrt(1.0-step*tk) / math.Sqrt(1.0-step*tt) dgi = 1.0 / dg a := math.Sqrt(1.0-step*tk) * math.Sqrt(1.0-step*tt) lmbda.SetIndex(-1, a*lmbda.GetIndex(-1)) // Unscale s, z, tau, kappa (unscaled variables are used only to // compute feasibility residuals). ind := dims.Sum("l", "q") ind2 = ind blas.Copy(lmbda, s, &la.IOpt{"n", ind}) for _, m := range dims.At("s") { blas.ScalFloat(s, 0.0, &la.IOpt{"offset", ind2}) blas.Copy(lmbda, s, &la.IOpt{"offsetx", ind}, &la.IOpt{"offsety", ind2}, &la.IOpt{"n", m}, &la.IOpt{"incy", m + 1}) ind += m ind2 += m * m } scale(s, W, true, false) ind = dims.Sum("l", "q") ind2 = ind blas.Copy(lmbda, z, &la.IOpt{"n", ind}) for _, m := range dims.At("s") { blas.ScalFloat(z, 0.0, &la.IOpt{"offset", ind2}) blas.Copy(lmbda, z, &la.IOpt{"offsetx", ind}, &la.IOpt{"offsety", ind2}, &la.IOpt{"n", m}, &la.IOpt{"incy", m + 1}) ind += m ind2 += m * m } scale(z, W, false, true) kappa.SetValue(lmbda.GetIndex(-1) / dgi) tau.SetValue(lmbda.GetIndex(-1) * dgi) g := blas.Nrm2Float(lmbda, &la.IOpt{"n", lmbda.Rows() - 1}) / tau.Float() gap = g * g //fmt.Printf(" ** kappa=%.10f, tau=%.10f, gap=%.10f\n", kappa.Float(), tau.Float(), gap) } return }
func error(ref, val *matrix.FloatMatrix) (nrm float64, diff *matrix.FloatMatrix) { diff = ref.Minus(val) nrm = blas.Nrm2(diff).Float() return }