func GbtrsFloat(A, B *matrix.FloatMatrix, ipiv []int32, KL int, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) ind.Kl = KL err = checkGbtrs(ind, A, B, ipiv) if err != nil { return err } if ind.N == 0 || ind.Nrhs == 0 { return nil } Aa := A.FloatArray() Ba := B.FloatArray() trans := linalg.ParamString(pars.Trans) info := dgbtrs(trans, ind.N, ind.Kl, ind.Ku, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, ipiv, Ba[ind.OffsetB:], ind.LDb) if info != 0 { return errors.New(fmt.Sprintf("Gbtrs: call error: %d", info)) } return nil }
// See function Trsm. func TrsmFloat(A, B *matrix.FloatMatrix, alpha float64, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, ftrsm, A, B, nil, params) if err != nil { return } if ind.N == 0 || ind.M == 0 { return } Aa := A.FloatArray() Ba := B.FloatArray() uplo := linalg.ParamString(params.Uplo) transA := linalg.ParamString(params.TransA) side := linalg.ParamString(params.Side) diag := linalg.ParamString(params.Diag) dtrsm(side, uplo, transA, diag, ind.M, ind.N, alpha, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb) return }
// See function Syrk. func SyrkFloat(A, C *matrix.FloatMatrix, alpha, beta float64, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, fsyrk, A, nil, C, params) if e != nil || err != nil { return } if ind.N == 0 { return } Aa := A.FloatArray() Ca := C.FloatArray() uplo := linalg.ParamString(params.Uplo) trans := linalg.ParamString(params.Trans) //diag := linalg.ParamString(params.Diag) dsyrk(uplo, trans, ind.N, ind.K, alpha, Aa[ind.OffsetA:], ind.LDa, beta, Ca[ind.OffsetC:], ind.LDc) return }
func (p *FloorPlan) F2(x, z *matrix.FloatMatrix) (f, Df, H *matrix.FloatMatrix, err error) { f, Df, err = p.F1(x) x17 := matrix.FloatVector(x.FloatArray()[17:]) tmp := p.Amin.Div(x17.Pow(3.0)) tmp = z.Mul(tmp).Scale(2.0) diag := matrix.FloatDiagonal(5, tmp.FloatArray()...) H = matrix.FloatZeros(22, 22) H.SetSubMatrix(17, 17, diag) return }
func sinv(x, y *matrix.FloatMatrix, dims *DimensionSet, mnl int) (err error) { /*DEBUGGED*/ err = nil // For the nonlinear and 'l' blocks: // // yk o\ xk = yk .\ xk. ind := mnl + dims.At("l")[0] blas.Tbsv(y, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"ldA", 1}) // For the 'q' blocks: // // [ l0 -l1' ] // yk o\ xk = 1/a^2 * [ ] * xk // [ -l1 (a*I + l1*l1')/l0 ] // // where yk = (l0, l1) and a = l0^2 - l1'*l1. for _, m := range dims.At("q") { aa := blas.Nrm2Float(y, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offset", ind + 1}) ee := y.GetIndex(ind) aa = (ee + aa) * (ee - aa) cc := x.GetIndex(ind) dd := blas.DotFloat(x, y, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}) x.SetIndex(ind, cc*ee-dd) blas.ScalFloat(x, aa/ee, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offset", ind + 1}) blas.AxpyFloat(y, x, dd/ee-cc, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}) blas.ScalFloat(x, 1.0/aa, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind}) ind += m } // For the 's' blocks: // // yk o\ xk = xk ./ gamma // // where gammaij = .5 * (yk_i + yk_j). ind2 := ind for _, m := range dims.At("s") { for j := 0; j < m; j++ { u := matrix.FloatVector(y.FloatArray()[ind2+j : ind2+m]) u.Add(y.GetIndex(ind2 + j)) u.Scale(0.5) blas.Tbsv(u, x, &la_.IOpt{"n", m - j}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", ind + j*(m+1)}) } ind += m * m ind2 += m } return }
// See function Scal. func ScalFloat(X *matrix.FloatMatrix, alpha float64, opts ...linalg.Option) (err error) { ind := linalg.GetIndexOpts(opts...) err = check_level1_func(ind, fscal, X, nil) if err != nil { return } if ind.Nx == 0 { return } Xa := X.FloatArray() dscal(ind.Nx, alpha, Xa[ind.OffsetX:], ind.IncX) return }
// Returns min {t | x + t*e >= 0}, where e is defined as follows // // - For the nonlinear and 'l' blocks: e is the vector of ones. // - For the 'q' blocks: e is the first unit vector. // - For the 's' blocks: e is the identity matrix. // // When called with the argument sigma, also returns the eigenvalues // (in sigma) and the eigenvectors (in x) of the 's' components of x. func maxStep(x *matrix.FloatMatrix, dims *DimensionSet, mnl int, sigma *matrix.FloatMatrix) (rval float64, err error) { /*DEBUGGED*/ rval = 0.0 err = nil t := make([]float64, 0, 10) ind := mnl + dims.Sum("l") if ind > 0 { t = append(t, -minvec(x.FloatArray()[:ind])) } for _, m := range dims.At("q") { if m > 0 { v := blas.Nrm2Float(x, &la_.IOpt{"offset", ind + 1}, &la_.IOpt{"n", m - 1}) v -= x.GetIndex(ind) t = append(t, v) } ind += m } var Q *matrix.FloatMatrix var w *matrix.FloatMatrix ind2 := 0 if sigma == nil && len(dims.At("s")) > 0 { mx := dims.Max("s") Q = matrix.FloatZeros(mx, mx) w = matrix.FloatZeros(mx, 1) } for _, m := range dims.At("s") { if sigma == nil { blas.Copy(x, Q, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m * m}) err = lapack.SyevrFloat(Q, w, nil, 0.0, nil, []int{1, 1}, la_.OptRangeInt, &la_.IOpt{"n", m}, &la_.IOpt{"lda", m}) if m > 0 { t = append(t, -w.GetIndex(0)) } } else { err = lapack.SyevdFloat(x, sigma, la_.OptJobZValue, &la_.IOpt{"n", m}, &la_.IOpt{"lda", m}, &la_.IOpt{"offseta", ind}, &la_.IOpt{"offsetw", ind2}) if m > 0 { t = append(t, -sigma.GetIndex(ind2)) } } ind += m * m ind2 += m } if len(t) > 0 { rval = maxvec(t) } return }
func GesvdFloat(A, S, U, Vt *matrix.FloatMatrix, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) err = checkGesvd(ind, pars, A, S, U, Vt) if err != nil { return err } if ind.M == 0 || ind.N == 0 { return nil } Aa := A.FloatArray() Sa := S.FloatArray() var Ua, Va []float64 Ua = nil Va = nil if U != nil { Ua = U.FloatArray()[ind.OffsetU:] } if Vt != nil { Va = Vt.FloatArray()[ind.OffsetVt:] } info := dgesvd(linalg.ParamString(pars.Jobu), linalg.ParamString(pars.Jobvt), ind.M, ind.N, Aa[ind.OffsetA:], ind.LDa, Sa[ind.OffsetS:], Ua, ind.LDu, Va, ind.LDvt) if info != 0 { return errors.New("GesvdFloat not implemented yet") } return nil }
// See function Copy. func CopyFloat(X, Y *matrix.FloatMatrix, opts ...linalg.Option) (err error) { ind := linalg.GetIndexOpts(opts...) err = check_level1_func(ind, fcopy, X, Y) if err != nil { return } if ind.Nx == 0 { return } Xa := X.FloatArray() Ya := Y.FloatArray() dcopy(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY) return }
// See function Asum. func AsumFloat(X *matrix.FloatMatrix, opts ...linalg.Option) (v float64) { v = math.NaN() ind := linalg.GetIndexOpts(opts...) err := check_level1_func(ind, fasum, X, nil) if err != nil { return } if ind.Nx == 0 { v = 0.0 return } Xa := X.FloatArray() v = dasum(ind.Nx, Xa[ind.OffsetX:], ind.IncX) return }
// See functin Dot. func DotFloat(X, Y *matrix.FloatMatrix, opts ...linalg.Option) (v float64) { v = math.NaN() ind := linalg.GetIndexOpts(opts...) err := check_level1_func(ind, fdot, X, Y) if err != nil { return } if ind.Nx == 0 { v = 0.0 return } Xa := X.FloatArray() Ya := Y.FloatArray() v = ddot(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY) return }
func GbtrfFloat(A *matrix.FloatMatrix, ipiv []int32, M, KL int, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) ind.M = M ind.Kl = KL err := checkGbtrf(ind, A, ipiv) if err != nil { return err } if ind.M == 0 || ind.N == 0 { return nil } Aa := A.FloatArray() info := dgbtrf(ind.M, ind.N, ind.Kl, ind.Ku, Aa[ind.OffsetA:], ind.LDa, ipiv) if info != 0 { return errors.New(fmt.Sprintf("Gbtrf call error: %d", info)) } return nil }
func PotrfFloat(A *matrix.FloatMatrix, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) err = checkPotrf(ind, A) if ind.N == 0 { return nil } Aa := A.FloatArray() uplo := linalg.ParamString(pars.Uplo) info := dpotrf(uplo, ind.N, Aa[ind.OffsetA:], ind.LDa) if info != 0 { return errors.New(fmt.Sprintf("Potrf: call error %d", info)) } return nil }
func GbsvFloat(A, B *matrix.FloatMatrix, ipiv []int32, kl int, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) ind.Kl = kl err := checkGbsv(ind, A, B, ipiv) if err != nil { return err } if ind.N == 0 || ind.Nrhs == 0 { return nil } Aa := A.FloatArray() Ba := B.FloatArray() info := dgbsv(ind.N, ind.Kl, ind.Ku, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, ipiv, Ba[ind.OffsetB:], ind.LDb) if info != 0 { return errors.New(fmt.Sprintf("Gbsv call error: %d", info)) } return nil }
// See function Syr. func SyrFloat(X, A *matrix.FloatMatrix, alpha float64, opts ...linalg.Option) (err error) { var params *linalg.Parameters params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, fsyr, X, nil, A, params) if err != nil { return } if ind.N == 0 { return } Xa := X.FloatArray() Aa := A.FloatArray() uplo := linalg.ParamString(params.Uplo) dsyr(uplo, ind.N, alpha, Xa[ind.OffsetX:], ind.IncX, Aa[ind.OffsetA:], ind.LDa) return }
func (p *FloorPlan) F1(x *matrix.FloatMatrix) (f, Df *matrix.FloatMatrix, err error) { err = nil mn := x.Min(-1, -2, -3, -4, -5) if mn <= 0.0 { f, Df = nil, nil return } zeros := matrix.FloatZeros(5, 12) dk1 := matrix.FloatDiagonal(5, -1.0) dk2 := matrix.FloatZeros(5, 5) x17 := matrix.FloatVector(x.FloatArray()[17:]) // -( Amin ./ (x17 .* x17) ) diag := p.Amin.Div(x17.Mul(x17)).Scale(-1.0) dk2.SetIndexes(matrix.MakeDiagonalSet(5, 5), diag.FloatArray()) Df, _ = matrix.FloatMatrixCombined(matrix.StackRight, zeros, dk1, dk2) x12 := matrix.FloatVector(x.FloatArray()[12:17]) // f = -x[12:17] + div(Amin, x[17:]) f = p.Amin.Div(x17).Minus(x12) return }
// See function Symm. func SymmFloat(A, B, C *matrix.FloatMatrix, alpha, beta float64, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, fsymm, A, B, C, params) if err != nil { return } if ind.M == 0 || ind.N == 0 { return } Aa := A.FloatArray() Ba := B.FloatArray() Ca := C.FloatArray() uplo := linalg.ParamString(params.Uplo) side := linalg.ParamString(params.Side) dsymm(side, uplo, ind.M, ind.N, alpha, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, beta, Ca[ind.OffsetC:], ind.LDc) return }
// See function Gemm. func GemmFloat(A, B, C *matrix.FloatMatrix, alpha, beta float64, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, fgemm, A, B, C, params) if err != nil { return } if ind.M == 0 || ind.N == 0 { return } Aa := A.FloatArray() Ba := B.FloatArray() Ca := C.FloatArray() transB := linalg.ParamString(params.TransB) transA := linalg.ParamString(params.TransA) //diag := linalg.ParamString(params.Diag) dgemm(transA, transB, ind.M, ind.N, ind.K, alpha, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, beta, Ca[ind.OffsetC:], ind.LDc) return }
// See function Gbmv. func GbmvFloat(A, X, Y *matrix.FloatMatrix, alpha, beta float64, opts ...linalg.Option) (err error) { var params *linalg.Parameters params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, fgbmv, X, Y, A, params) if err != nil { return } if ind.M == 0 && ind.N == 0 { return } Xa := X.FloatArray() Ya := Y.FloatArray() Aa := A.FloatArray() if params.Trans == linalg.PNoTrans && ind.N == 0 { dscal(ind.M, beta, Ya[ind.OffsetY:], ind.IncY) } else if params.Trans == linalg.PTrans && ind.M == 0 { dscal(ind.N, beta, Ya[ind.OffsetY:], ind.IncY) } else { trans := linalg.ParamString(params.Trans) dgbmv(trans, ind.M, ind.N, ind.Kl, ind.Ku, alpha, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX, beta, Ya[ind.OffsetY:], ind.IncY) } return }
func SyevdFloat(A, W *matrix.FloatMatrix, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) err = checkSyevd(ind, A, W) if err != nil { return err } if ind.N == 0 { return nil } jobz := linalg.ParamString(pars.Jobz) uplo := linalg.ParamString(pars.Uplo) Aa := A.FloatArray() Wa := W.FloatArray() info := dsyevd(jobz, uplo, ind.N, Aa[ind.OffsetA:], ind.LDa, Wa[ind.OffsetW:]) if info != 0 { return errors.New(fmt.Sprintf("Syevd: call error %d", info)) } return nil }
// See function Tbsv. func TbsvFloat(A, X *matrix.FloatMatrix, opts ...linalg.Option) (err error) { var params *linalg.Parameters params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, ftbsv, X, nil, A, params) if err != nil { return } if ind.N == 0 { return } Xa := X.FloatArray() Aa := A.FloatArray() uplo := linalg.ParamString(params.Uplo) trans := linalg.ParamString(params.Trans) diag := linalg.ParamString(params.Diag) dtbsv(uplo, trans, diag, ind.N, ind.K, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX) return }
// See function Ger. func GerFloat(X, Y, A *matrix.FloatMatrix, alpha float64, opts ...linalg.Option) (err error) { var params *linalg.Parameters params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, fger, X, Y, A, params) if err != nil { return } if ind.N == 0 || ind.M == 0 { return } Xa := X.FloatArray() Ya := Y.FloatArray() Aa := A.FloatArray() dger(ind.M, ind.N, alpha, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY, Aa[ind.OffsetA:], ind.LDa) return }
// See function Sbmv. func SbmvFloat(A, X, Y *matrix.FloatMatrix, alpha, beta float64, opts ...linalg.Option) (err error) { var params *linalg.Parameters params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, fsbmv, X, Y, A, params) if err != nil { return } if ind.N == 0 { return } Xa := X.FloatArray() Ya := Y.FloatArray() Aa := A.FloatArray() uplo := linalg.ParamString(params.Uplo) dsbmv(uplo, ind.N, ind.K, alpha, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX, beta, Ya[ind.OffsetY:], ind.IncY) return }
// Solves a pair of primal and dual SDPs // // minimize c'*x // subject to Gl*x + sl = hl // mat(Gs[k]*x) + ss[k] = hs[k], k = 0, ..., N-1 // A*x = b // sl >= 0, ss[k] >= 0, k = 0, ..., N-1 // // maximize -hl'*z - sum_k trace(hs[k]*zs[k]) - b'*y // subject to Gl'*zl + sum_k Gs[k]'*vec(zs[k]) + A'*y + c = 0 // zl >= 0, zs[k] >= 0, k = 0, ..., N-1. // // The inequalities sl >= 0 and zl >= 0 are elementwise vector // inequalities. The inequalities ss[k] >= 0, zs[k] >= 0 are matrix // inequalities, i.e., the symmetric matrices ss[k] and zs[k] must be // positive semidefinite. mat(Gs[k]*x) is the symmetric matrix X with // X[:] = Gs[k]*x. For a symmetric matrix, zs[k], vec(zs[k]) is the // vector zs[k][:]. // func Sdp(c, Gl, hl, A, b *matrix.FloatMatrix, Ghs *FloatMatrixSet, solopts *SolverOptions, primalstart, dualstart *FloatMatrixSet) (sol *Solution, err error) { if c == nil { err = errors.New("'c' must a column matrix") return } n := c.Rows() if n < 1 { err = errors.New("Number of variables must be at least 1") return } if Gl == nil { Gl = matrix.FloatZeros(0, n) } if Gl.Cols() != n { err = errors.New(fmt.Sprintf("'G' must be matrix with %d columns", n)) return } ml := Gl.Rows() if hl == nil { hl = matrix.FloatZeros(0, 1) } if !hl.SizeMatch(ml, 1) { err = errors.New(fmt.Sprintf("'hl' must be matrix of size (%d,1)", ml)) return } Gsset := Ghs.At("Gs") ms := make([]int, 0) for i, Gs := range Gsset { if Gs.Cols() != n { err = errors.New(fmt.Sprintf("'Gs' must be list of matrices with %d columns", n)) return } sz := int(math.Sqrt(float64(Gs.Rows()))) if Gs.Rows() != sz*sz { err = errors.New(fmt.Sprintf("the squareroot of the number of rows of 'Gq[%d]' is not an integer", i)) return } ms = append(ms, sz) } hsset := Ghs.At("hs") if len(Gsset) != len(hsset) { err = errors.New(fmt.Sprintf("'hs' must be a list of %d matrices", len(Gsset))) return } for i, hs := range hsset { if !hs.SizeMatch(ms[i], ms[i]) { s := fmt.Sprintf("hq[%d] has size (%d,%d). Expected size is (%d,%d)", i, hs.Rows(), hs.Cols(), ms[i], ms[i]) err = errors.New(s) return } } if A == nil { A = matrix.FloatZeros(0, n) } if A.Cols() != n { err = errors.New(fmt.Sprintf("'A' must be matrix with %d columns", n)) return } p := A.Rows() if b == nil { b = matrix.FloatZeros(0, 1) } if !b.SizeMatch(p, 1) { err = errors.New(fmt.Sprintf("'b' must be matrix of size (%d,1)", p)) return } dims := DSetNew("l", "q", "s") dims.Set("l", []int{ml}) dims.Set("s", ms) N := dims.Sum("l") + dims.SumSquared("s") // Map hs matrices to h vector h := matrix.FloatZeros(N, 1) h.SetIndexes(matrix.MakeIndexSet(0, ml, 1), hl.FloatArray()[:ml]) ind := ml for k, hs := range hsset { h.SetIndexes(matrix.MakeIndexSet(ind, ind+ms[k]*ms[k], 1), hs.FloatArray()) ind += ms[k] * ms[k] } Gargs := make([]*matrix.FloatMatrix, 0) Gargs = append(Gargs, Gl) Gargs = append(Gargs, Gsset...) G, sizeg := matrix.FloatMatrixCombined(matrix.StackDown, Gargs...) var pstart, dstart *FloatMatrixSet = nil, nil if primalstart != nil { pstart = FloatSetNew("x", "s") pstart.Set("x", primalstart.At("x")[0]) slset := primalstart.At("sl") margs := make([]*matrix.FloatMatrix, 0, len(slset)+1) margs = append(margs, primalstart.At("s")[0]) margs = append(margs, slset...) sl, _ := matrix.FloatMatrixCombined(matrix.StackDown, margs...) pstart.Set("s", sl) } if dualstart != nil { dstart = FloatSetNew("y", "z") dstart.Set("y", dualstart.At("y")[0]) zlset := primalstart.At("zl") margs := make([]*matrix.FloatMatrix, 0, len(zlset)+1) margs = append(margs, dualstart.At("z")[0]) margs = append(margs, zlset...) zl, _ := matrix.FloatMatrixCombined(matrix.StackDown, margs...) dstart.Set("z", zl) } sol, err = ConeLp(c, G, h, A, b, dims, solopts, pstart, dstart) // unpack sol.Result if err == nil { s := sol.Result.At("s")[0] sl := matrix.FloatVector(s.FloatArray()[:ml]) sol.Result.Append("sl", sl) ind := ml for _, m := range ms { sk := matrix.FloatNew(m, m, s.FloatArray()[ind:ind+m*m]) sol.Result.Append("ss", sk) ind += m * m } z := sol.Result.At("z")[0] zl := matrix.FloatVector(s.FloatArray()[:ml]) sol.Result.Append("zl", zl) ind = ml for i, k := range sizeg[1:] { zk := matrix.FloatNew(ms[i], ms[i], z.FloatArray()[ind:ind+k]) sol.Result.Append("zs", zk) ind += k } } sol.Result.Remove("s") sol.Result.Remove("z") return }
func updateScaling(W *FloatMatrixSet, lmbda, s, z *matrix.FloatMatrix) (err error) { err = nil var stmp, ztmp *matrix.FloatMatrix /* Nonlinear and 'l' blocks d := d .* sqrt( s ./ z ) lmbda := lmbda .* sqrt(s) .* sqrt(z) */ mnl := 0 dnlset := W.At("dnl") dnliset := W.At("dnli") dset := W.At("d") diset := W.At("di") beta := W.At("beta")[0] if dnlset != nil && dnlset[0].NumElements() > 0 { mnl = dnlset[0].NumElements() } ml := dset[0].NumElements() m := mnl + ml //fmt.Printf("ml=%d, mnl=%d, m=%d'n", ml, mnl, m) stmp = matrix.FloatVector(s.FloatArray()[:m]) stmp.Apply(stmp, math.Sqrt) s.SetIndexes(matrix.MakeIndexSet(0, m, 1), stmp.FloatArray()) ztmp = matrix.FloatVector(z.FloatArray()[:m]) ztmp.Apply(ztmp, math.Sqrt) z.SetIndexes(matrix.MakeIndexSet(0, m, 1), ztmp.FloatArray()) // d := d .* s .* z if len(dnlset) > 0 { blas.TbmvFloat(s, dnlset[0], &la_.IOpt{"n", mnl}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) blas.TbsvFloat(z, dnlset[0], &la_.IOpt{"n", mnl}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) dnliset[0].Apply(dnlset[0], func(a float64) float64 { return 1.0 / a }) } blas.TbmvFloat(s, dset[0], &la_.IOpt{"n", ml}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offseta", mnl}) blas.TbsvFloat(z, dset[0], &la_.IOpt{"n", ml}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offseta", mnl}) diset[0].Apply(dset[0], func(a float64) float64 { return 1.0 / a }) // lmbda := s .* z blas.CopyFloat(s, lmbda, &la_.IOpt{"n", m}) blas.TbmvFloat(z, lmbda, &la_.IOpt{"n", m}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) //fmt.Printf("-- end of l:\nz=\n%v\nlmbda=\n%v\n", z.ConvertToString(), lmbda.ConvertToString()) //fmt.Printf("W[d]=\n%v\n", dset[0].ConvertToString()) //fmt.Printf("W[di]=\n%v\n", diset[0].ConvertToString()) // 'q' blocks. // Let st and zt be the new variables in the old scaling: // // st = s_k, zt = z_k // // and a = sqrt(st' * J * st), b = sqrt(zt' * J * zt). // // 1. Compute the hyperbolic Householder transformation 2*q*q' - J // that maps st/a to zt/b. // // c = sqrt( (1 + st'*zt/(a*b)) / 2 ) // q = (st/a + J*zt/b) / (2*c). // // The new scaling point is // // wk := betak * sqrt(a/b) * (2*v[k]*v[k]' - J) * q // // with betak = W['beta'][k]. // // 3. The scaled variable: // // lambda_k0 = sqrt(a*b) * c // lambda_k1 = sqrt(a*b) * ( (2vk*vk' - J) * (-d*q + u/2) )_1 // // where // // u = st/a - J*zt/b // d = ( vk0 * (vk'*u) + u0/2 ) / (2*vk0 *(vk'*q) - q0 + 1). // // 4. Update scaling // // v[k] := wk^1/2 // = 1 / sqrt(2*(wk0 + 1)) * (wk + e). // beta[k] *= sqrt(a/b) ind := m for k, v := range W.At("v") { m = v.NumElements() // ln = sqrt( lambda_k' * J * lambda_k ) !! NOT USED!! jnrm2(lmbda, m, ind) // ?? NOT USED ?? // a = sqrt( sk' * J * sk ) = sqrt( st' * J * st ) // s := s / a = st / a aa := jnrm2(s, m, ind) blas.ScalFloat(s, 1.0/aa, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind}) // b = sqrt( zk' * J * zk ) = sqrt( zt' * J * zt ) // z := z / a = zt / b bb := jnrm2(z, m, ind) blas.ScalFloat(z, 1.0/bb, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind}) // c = sqrt( ( 1 + (st'*zt) / (a*b) ) / 2 ) cc := blas.DotFloat(s, z, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"offsety", ind}, &la_.IOpt{"n", m}) cc = math.Sqrt((1.0 + cc) / 2.0) // vs = v' * st / a vs := blas.DotFloat(v, s, &la_.IOpt{"offsety", ind}, &la_.IOpt{"n", m}) // vz = v' * J *zt / b vz := jdot(v, z, m, 0, ind) // vq = v' * q where q = (st/a + J * zt/b) / (2 * c) vq := (vs + vz) / 2.0 / cc // vq = v' * q where q = (st/a + J * zt/b) / (2 * c) vu := vs - vz // lambda_k0 = c lmbda.SetIndex(ind, cc) // wk0 = 2 * vk0 * (vk' * q) - q0 wk0 := 2.0*v.GetIndex(0)*vq - (s.GetIndex(ind)+z.GetIndex(ind))/2.0/cc // d = (v[0] * (vk' * u) - u0/2) / (wk0 + 1) dd := (v.GetIndex(0)*vu - s.GetIndex(ind)/2.0 + z.GetIndex(ind)/2.0) / (wk0 + 1.0) // lambda_k1 = 2 * v_k1 * vk' * (-d*q + u/2) - d*q1 + u1/2 blas.CopyFloat(v, lmbda, &la_.IOpt{"offsetx", 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) blas.ScalFloat(lmbda, (2.0 * (-dd*vq + 0.5*vu)), &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) blas.AxpyFloat(s, lmbda, 0.5*(1.0-dd/cc), &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) blas.AxpyFloat(z, lmbda, 0.5*(1.0+dd/cc), &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) // Scale so that sqrt(lambda_k' * J * lambda_k) = sqrt(aa*bb). blas.ScalFloat(lmbda, math.Sqrt(aa*bb), &la_.IOpt{"offset", ind}, &la_.IOpt{"n", m}) // v := (2*v*v' - J) * q // = 2 * (v'*q) * v' - (J* st/a + zt/b) / (2*c) blas.ScalFloat(v, 2.0*vq) v.SetIndex(0, v.GetIndex(0)-(s.GetIndex(ind)/2.0/cc)) blas.AxpyFloat(s, v, 0.5/cc, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", 1}, &la_.IOpt{"n", m - 1}) blas.AxpyFloat(z, v, -0.5/cc, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m}) // v := v^{1/2} = 1/sqrt(2 * (v0 + 1)) * (v + e) v0 := v.GetIndex(0) + 1.0 v.SetIndex(0, v0) blas.ScalFloat(v, 1.0/math.Sqrt(2.0*v0)) // beta[k] *= ( aa / bb )**1/2 bk := beta.GetIndex(k) beta.SetIndex(k, bk*math.Sqrt(aa/bb)) ind += m } //fmt.Printf("-- end of q:\nz=\n%v\nlmbda=\n%v\n", z.ConvertToString(), lmbda.ConvertToString()) //fmt.Printf("beta=\n%v\n", beta.ConvertToString()) // 's' blocks // // Let st, zt be the updated variables in the old scaling: // // st = Ls * Ls', zt = Lz * Lz'. // // where Ls and Lz are the 's' components of s, z. // // 1. SVD Lz'*Ls = Uk * lambda_k^+ * Vk'. // // 2. New scaling is // // r[k] := r[k] * Ls * Vk * diag(lambda_k^+)^{-1/2} // rti[k] := r[k] * Lz * Uk * diag(lambda_k^+)^{-1/2}. // maxr := 0 for _, m := range W.At("r") { if m.Rows() > maxr { maxr = m.Rows() } } work := matrix.FloatZeros(maxr*maxr, 1) vlensum := 0 for _, m := range W.At("v") { vlensum += m.NumElements() } ind = mnl + ml + vlensum ind2 := ind ind3 := 0 rset := W.At("r") rtiset := W.At("rti") for k, _ := range rset { r := rset[k] rti := rtiset[k] m = r.Rows() //fmt.Printf("m=%d, r=\n%v\nrti=\n%v\n", m, r.ConvertToString(), rti.ConvertToString()) // r := r*sk = r*Ls blas.GemmFloat(r, s, work, 1.0, 0.0, &la_.IOpt{"m", m}, &la_.IOpt{"n", m}, &la_.IOpt{"k", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"ldc", m}, &la_.IOpt{"offsetb", ind2}) //fmt.Printf("1 work=\n%v\n", work.ConvertToString()) blas.CopyFloat(work, r, &la_.IOpt{"n", m * m}) // rti := rti*zk = rti*Lz blas.GemmFloat(rti, z, work, 1.0, 0.0, &la_.IOpt{"m", m}, &la_.IOpt{"n", m}, &la_.IOpt{"k", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"ldc", m}, &la_.IOpt{"offsetb", ind2}) //fmt.Printf("2 work=\n%v\n", work.ConvertToString()) blas.CopyFloat(work, rti, &la_.IOpt{"n", m * m}) // SVD Lz'*Ls = U * lmbds^+ * V'; store U in sk and V' in zk. ' blas.GemmFloat(z, s, work, 1.0, 0.0, la_.OptTransA, &la_.IOpt{"m", m}, &la_.IOpt{"n", m}, &la_.IOpt{"k", m}, &la_.IOpt{"lda", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"ldc", m}, &la_.IOpt{"offseta", ind2}, &la_.IOpt{"offsetb", ind2}) //fmt.Printf("3 work=\n%v\n", work.ConvertToString()) // U = s, Vt = z lapack.GesvdFloat(work, lmbda, s, z, la_.OptJobuAll, la_.OptJobvtAll, &la_.IOpt{"m", m}, &la_.IOpt{"n", m}, &la_.IOpt{"lda", m}, &la_.IOpt{"ldu", m}, &la_.IOpt{"ldvt", m}, &la_.IOpt{"offsets", ind}, &la_.IOpt{"offsetu", ind2}, &la_.IOpt{"offsetvt", ind2}) // r := r*V blas.GemmFloat(r, z, work, 1.0, 0.0, la_.OptTransB, &la_.IOpt{"m", m}, &la_.IOpt{"n", m}, &la_.IOpt{"k", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"ldc", m}, &la_.IOpt{"offsetb", ind2}) //fmt.Printf("4 work=\n%v\n", work.ConvertToString()) blas.CopyFloat(work, r, &la_.IOpt{"n", m * m}) // rti := rti*U blas.GemmFloat(rti, s, work, 1.0, 0.0, &la_.IOpt{"m", m}, &la_.IOpt{"n", m}, &la_.IOpt{"k", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"ldc", m}, &la_.IOpt{"offsetb", ind2}) //fmt.Printf("5 work=\n%v\n", work.ConvertToString()) blas.CopyFloat(work, rti, &la_.IOpt{"n", m * m}) for i := 0; i < m; i++ { a := 1.0 / math.Sqrt(lmbda.GetIndex(ind+i)) blas.ScalFloat(r, a, &la_.IOpt{"n", m}, &la_.IOpt{"offset", m * i}) blas.ScalFloat(rti, a, &la_.IOpt{"n", m}, &la_.IOpt{"offset", m * i}) } ind += m ind2 += m * m ind3 += m // !!NOT USED: ind3!! } //fmt.Printf("-- end of s:\nz=\n%v\nlmbda=\n%v\n", z.ConvertToString(), lmbda.ConvertToString()) return }
/* Returns the Nesterov-Todd scaling W at points s and z, and stores the scaled variable in lmbda. W * z = W^{-T} * s = lmbda. W is a MatrixSet with entries: - W['dnl']: positive vector - W['dnli']: componentwise inverse of W['dnl'] - W['d']: positive vector - W['di']: componentwise inverse of W['d'] - W['v']: lists of 2nd order cone vectors with unit hyperbolic norms - W['beta']: list of positive numbers - W['r']: list of square matrices - W['rti']: list of square matrices. rti[k] is the inverse transpose of r[k]. */ func computeScaling(s, z, lmbda *matrix.FloatMatrix, dims *DimensionSet, mnl int) (W *FloatMatrixSet, err error) { /*DEBUGGED*/ err = nil W = FloatSetNew("dnl", "dnli", "d", "di", "v", "beta", "r", "rti") // For the nonlinear block: // // W['dnl'] = sqrt( s[:mnl] ./ z[:mnl] ) // W['dnli'] = sqrt( z[:mnl] ./ s[:mnl] ) // lambda[:mnl] = sqrt( s[:mnl] .* z[:mnl] ) var stmp, ztmp, lmd *matrix.FloatMatrix if mnl > 0 { stmp = matrix.FloatVector(s.FloatArray()[:mnl]) ztmp = matrix.FloatVector(z.FloatArray()[:mnl]) dnl := stmp.Div(ztmp) dnl.Apply(dnl, math.Sqrt) dnli := dnl.Copy() dnli.Apply(dnli, func(a float64) float64 { return 1.0 / a }) W.Set("dnl", dnl) W.Set("dnli", dnli) lmd = stmp.Mul(ztmp) lmd.Apply(lmd, math.Sqrt) lmbda.SetIndexes(matrix.MakeIndexSet(0, mnl, 1), lmd.FloatArray()) } else { mnl = 0 } // For the 'l' block: // // W['d'] = sqrt( sk ./ zk ) // W['di'] = sqrt( zk ./ sk ) // lambdak = sqrt( sk .* zk ) // // where sk and zk are the first dims['l'] entries of s and z. // lambda_k is stored in the first dims['l'] positions of lmbda. m := dims.At("l")[0] td := s.FloatArray() stmp = matrix.FloatVector(td[mnl : mnl+m]) zd := z.FloatArray() //fmt.Printf("zdata=%v\n", zd[mnl:mnl+m]) ztmp = matrix.FloatVector(zd[mnl : mnl+m]) d := stmp.Div(ztmp) d.Apply(d, math.Sqrt) di := d.Copy() di.Apply(di, func(a float64) float64 { return 1.0 / a }) //fmt.Printf("d:\n%v\n", d) //fmt.Printf("di:\n%v\n", di) W.Set("d", d) W.Set("di", di) lmd = stmp.Mul(ztmp) lmd.Apply(lmd, math.Sqrt) // lmd has indexes mnl:mnl+m and length of m lmbda.SetIndexes(matrix.MakeIndexSet(mnl, mnl+m, 1), lmd.FloatArray()) //fmt.Printf("after l:\n%v\n", lmbda) /* For the 'q' blocks, compute lists 'v', 'beta'. The vector v[k] has unit hyperbolic norm: (sqrt( v[k]' * J * v[k] ) = 1 with J = [1, 0; 0, -I]). beta[k] is a positive scalar. The hyperbolic Householder matrix H = 2*v[k]*v[k]' - J defined by v[k] satisfies (beta[k] * H) * zk = (beta[k] * H) \ sk = lambda_k where sk = s[indq[k]:indq[k+1]], zk = z[indq[k]:indq[k+1]]. lambda_k is stored in lmbda[indq[k]:indq[k+1]]. */ ind := mnl + dims.At("l")[0] var beta *matrix.FloatMatrix for _, k := range dims.At("q") { W.Append("v", matrix.FloatZeros(k, 1)) } beta = matrix.FloatZeros(len(dims.At("q")), 1) W.Set("beta", beta) vset := W.At("v") for k, m := range dims.At("q") { v := vset[k] // a = sqrt( sk' * J * sk ) where J = [1, 0; 0, -I] aa := jnrm2(s, m, ind) // b = sqrt( zk' * J * zk ) bb := jnrm2(z, m, ind) // beta[k] = ( a / b )**1/2 beta.SetIndex(k, math.Sqrt(aa/bb)) // c = sqrt( (sk/a)' * (zk/b) + 1 ) / sqrt(2) c0 := blas.DotFloat(s, z, &la_.IOpt{"n", m}, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"offsety", ind}) cc := math.Sqrt((c0/aa/bb + 1.0) / 2.0) // vk = 1/(2*c) * ( (sk/a) + J * (zk/b) ) blas.CopyFloat(z, v, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m}) blas.ScalFloat(v, -1.0/bb) v.SetIndex(0, -1.0*v.GetIndex(0)) blas.AxpyFloat(s, v, 1.0/aa, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m}) blas.ScalFloat(v, 1.0/2.0/cc) // v[k] = 1/sqrt(2*(vk0 + 1)) * ( vk + e ), e = [1; 0] v.SetIndex(0, v.GetIndex(0)+1.0) blas.ScalFloat(v, (1.0 / math.Sqrt(2.0*v.GetIndex(0)))) /* To get the scaled variable lambda_k d = sk0/a + zk0/b + 2*c lambda_k = [ c; (c + zk0/b)/d * sk1/a + (c + sk0/a)/d * zk1/b ] lambda_k *= sqrt(a * b) */ lmbda.SetIndex(ind, cc) dd := 2*cc + s.GetIndex(ind)/aa + z.GetIndex(ind)/bb blas.CopyFloat(s, lmbda, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) zz := (cc + z.GetIndex(ind)/bb) / dd / aa ss := (cc + s.GetIndex(ind)/aa) / dd / bb blas.ScalFloat(lmbda, zz, &la_.IOpt{"offset", ind + 1}, &la_.IOpt{"n", m - 1}) blas.AxpyFloat(z, lmbda, ss, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) blas.ScalFloat(lmbda, math.Sqrt(aa*bb), &la_.IOpt{"offset", ind}, &la_.IOpt{"n", m}) ind += m //fmt.Printf("after q[%d]:\n%v\n", k, lmbda) } /* For the 's' blocks: compute two lists 'r' and 'rti'. r[k]' * sk^{-1} * r[k] = diag(lambda_k)^{-1} r[k]' * zk * r[k] = diag(lambda_k) where sk and zk are the entries inds[k] : inds[k+1] of s and z, reshaped into symmetric matrices. rti[k] is the inverse of r[k]', so rti[k]' * sk * rti[k] = diag(lambda_k)^{-1} rti[k]' * zk^{-1} * rti[k] = diag(lambda_k). The vectors lambda_k are stored in lmbda[ dims['l'] + sum(dims['q']) : -1 ] */ for _, k := range dims.At("s") { W.Append("r", matrix.FloatZeros(k, k)) W.Append("rti", matrix.FloatZeros(k, k)) } maxs := maxdim(dims.At("s")) work := matrix.FloatZeros(maxs*maxs, 1) Ls := matrix.FloatZeros(maxs*maxs, 1) Lz := matrix.FloatZeros(maxs*maxs, 1) ind2 := ind for k, m := range dims.At("s") { r := W.At("r")[k] rti := W.At("rti")[k] // Factor sk = Ls*Ls'; store Ls in ds[inds[k]:inds[k+1]]. blas.CopyFloat(s, Ls, &la_.IOpt{"offsetx", ind2}, &la_.IOpt{"n", m * m}) lapack.PotrfFloat(Ls, &la_.IOpt{"n", m}, &la_.IOpt{"lda", m}) // Factor zs[k] = Lz*Lz'; store Lz in dz[inds[k]:inds[k+1]]. blas.CopyFloat(z, Lz, &la_.IOpt{"offsetx", ind2}, &la_.IOpt{"n", m * m}) lapack.PotrfFloat(Lz, &la_.IOpt{"n", m}, &la_.IOpt{"lda", m}) // SVD Lz'*Ls = U*diag(lambda_k)*V'. Keep U in work. for i := 0; i < m; i++ { blas.ScalFloat(Ls, 0.0, &la_.IOpt{"offset", i * m}, &la_.IOpt{"n", i}) } blas.CopyFloat(Ls, work, &la_.IOpt{"n", m * m}) blas.TrmmFloat(Lz, work, 1.0, la_.OptTransA, &la_.IOpt{"lda", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"n", m}, &la_.IOpt{"m", m}) lapack.GesvdFloat(work, lmbda, nil, nil, la_.OptJobuO, &la_.IOpt{"lda", m}, &la_.IOpt{"offsetS", ind}, &la_.IOpt{"n", m}, &la_.IOpt{"m", m}) // r = Lz^{-T} * U blas.CopyFloat(work, r, &la_.IOpt{"n", m * m}) blas.TrsmFloat(Lz, r, 1.0, la_.OptTransA, &la_.IOpt{"lda", m}, &la_.IOpt{"n", m}, &la_.IOpt{"m", m}) // rti = Lz * U blas.CopyFloat(work, rti, &la_.IOpt{"n", m * m}) blas.TrmmFloat(Lz, rti, 1.0, &la_.IOpt{"lda", m}, &la_.IOpt{"n", m}, &la_.IOpt{"m", m}) // r := r * diag(sqrt(lambda_k)) // rti := rti * diag(1 ./ sqrt(lambda_k)) for i := 0; i < m; i++ { a := math.Sqrt(lmbda.GetIndex(ind + i)) blas.ScalFloat(r, a, &la_.IOpt{"offset", m * i}, &la_.IOpt{"n", m}) blas.ScalFloat(rti, 1.0/a, &la_.IOpt{"offset", m * i}, &la_.IOpt{"n", m}) } ind += m ind2 += m * m } return }
/* Evaluates x := H(lambda^{1/2}) * x (inverse is 'N') x := H(lambda^{-1/2}) * x (inverse is 'I'). H is the Hessian of the logarithmic barrier. */ func scale2(lmbda, x *matrix.FloatMatrix, dims *DimensionSet, mnl int, inverse bool) (err error) { err = nil // For the nonlinear and 'l' blocks, // // xk := xk ./ l (inverse is 'N') // xk := xk .* l (inverse is 'I') // // where l is lmbda[:mnl+dims['l']]. ind := mnl + dims.Sum("l") if !inverse { blas.TbsvFloat(lmbda, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) } else { blas.TbmvFloat(lmbda, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) } // For 'q' blocks, if inverse is 'N', // // xk := 1/a * [ l'*J*xk; // xk[1:] - (xk[0] + l'*J*xk) / (l[0] + 1) * l[1:] ]. // // If inverse is 'I', // // xk := a * [ l'*xk; // xk[1:] + (xk[0] + l'*xk) / (l[0] + 1) * l[1:] ]. // // a = sqrt(lambda_k' * J * lambda_k), l = lambda_k / a. for _, m := range dims.At("q") { var lx, a, c, x0 float64 a = jnrm2(lmbda, m, ind) //&la_.IOpt{"n", m}, &la_.IOpt{"offset", ind}) if !inverse { lx = jdot(lmbda, x, m, ind, ind) //&la_.IOpt{"n", m}, &la_.IOpt{"offsetx", ind}, //&la_.IOpt{"offsety", ind}) lx /= a } else { lx = blas.DotFloat(lmbda, x, &la_.IOpt{"n", m}, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"offsety", ind}) lx /= a } x0 = x.GetIndex(ind) x.SetIndex(ind, lx) c = (lx + x0) / (lmbda.GetIndex(ind)/a + 1.0) / a if !inverse { c *= -1.0 } blas.AxpyFloat(lmbda, x, c, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}) if !inverse { a = 1.0 / a } blas.ScalFloat(x, a, &la_.IOpt{"offset", ind}, &la_.IOpt{"n", m}) ind += m } // For the 's' blocks, if inverse is 'N', // // xk := vec( diag(l)^{-1/2} * mat(xk) * diag(k)^{-1/2}). // // If inverse is true, // // xk := vec( diag(l)^{1/2} * mat(xk) * diag(k)^{1/2}). // // where l is kth block of lambda. // // We scale upper and lower triangular part of mat(xk) because the // inverse operation will be applied to nonsymmetric matrices. ind2 := ind sdims := dims.At("s") for k := 0; k < len(sdims); k++ { m := sdims[k] scaleF := func(v, x float64) float64 { return math.Sqrt(v) * math.Sqrt(x) } for j := 0; j < m; j++ { c := matrix.FloatVector(lmbda.FloatArray()[ind2 : ind2+m]) c.ApplyConst(c, scaleF, lmbda.GetIndex(ind2+j)) if !inverse { blas.Tbsv(c, x, &la_.IOpt{"n", m}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", ind + j*m}) } else { blas.Tbmv(c, x, &la_.IOpt{"n", m}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", ind + j*m}) } } ind += m * m ind2 += m } return }