func TestBidiagReduceUnblocked(t *testing.T) { N := 217 M := 269 conf := gomas.NewConf() conf.LB = 0 zeromean := cmat.NewFloatNormSource() A := cmat.NewMatrix(M, N) A.SetFrom(zeromean) tauq := cmat.NewMatrix(N, 1) taup := cmat.NewMatrix(N, 1) At := cmat.NewMatrix(N, M) blasd.Transpose(At, A) tauqt := cmat.NewMatrix(N, 1) taupt := cmat.NewMatrix(N, 1) W := lapackd.Workspace(M + N) lapackd.BDReduce(A, tauq, taup, W, conf) lapackd.BDReduce(At, tauqt, taupt, W, conf) // BiRed(A) == BiRed(A.T).T blasd.Plus(At, A, 1.0, -1.0, gomas.TRANSB) blasd.Axpy(tauqt, taup, -1.0) blasd.Axpy(taupt, tauq, -1.0) nrm := lapackd.NormP(At, lapackd.NORM_ONE) t.Logf("M=%d, N=%d || BiRed(A) - BiRed(A.T).T||_1 : %e\n", M, N, nrm) nrm = lapackd.NormP(taupt, lapackd.NORM_ONE) t.Logf(" || BiRed(A).tauq - BiRed(A.T).taup||_1 : %e\n", nrm) nrm = lapackd.NormP(tauqt, lapackd.NORM_ONE) t.Logf(" || BiRed(A).taup - BiRed(A.T).tauq||_1 : %e\n", nrm) }
// test: min ||X|| s.t A.T*X = B func TestSolveQR(t *testing.T) { M := 799 N := 711 K := 241 nb := 32 conf := gomas.NewConf() conf.LB = nb tau := cmat.NewMatrix(N, 1) A := cmat.NewMatrix(M, N) src := cmat.NewFloatNormSource() A.SetFrom(src) A0 := cmat.NewCopy(A) B0 := cmat.NewMatrix(M, K) B0.SetFrom(src) B := cmat.NewCopy(B0) W := lapackd.Workspace(lapackd.QRFactorWork(A, conf)) lapackd.QRFactor(A, tau, W, conf) lapackd.QRSolve(B, A, tau, W, gomas.TRANS, conf) var Bmin cmat.FloatMatrix Bmin.SubMatrix(B0, 0, 0, N, K) blasd.Mult(&Bmin, A0, B, 1.0, -1.0, gomas.TRANSA, conf) nrm := lapackd.NormP(&Bmin, lapackd.NORM_ONE) t.Logf("M=%d, N=%d ||B - A.T*X||_1: %e\n", M, N, nrm) }
func TestSolveBKLowerBig(t *testing.T) { N := 427 normsrc := cmat.NewFloatNormSource(5.0, 10.0) A := cmat.NewMatrix(N, N) A.SetFrom(normsrc, cmat.LOWER) X := cmat.NewMatrix(N, 2) X.SetFrom(normsrc) B := cmat.NewCopy(X) blasd.MultSym(B, A, X, 1.0, 0.0, gomas.LOWER|gomas.LEFT) ipiv := lapackd.NewPivots(N) conf := gomas.NewConf() conf.LB = 16 W := lapackd.Workspace(lapackd.BKFactorWork(A, conf)) lapackd.BKFactor(A, W, ipiv, gomas.LOWER, conf) lapackd.BKSolve(B, A, ipiv, gomas.LOWER, conf) ok := B.AllClose(X) t.Logf("N=%d unblk.BK(X) == A.-1*B : %v\n", N, ok) blasd.Plus(B, X, 1.0, -1.0, gomas.NONE) nrm := lapackd.NormP(B, lapackd.NORM_ONE) t.Logf(" ||X - A.-1*B||_1: %.4e\n", nrm) }
// test: min || B - A.T*X || func TestLeastSquaresLQ(t *testing.T) { M := 723 N := 811 K := 273 nb := 32 conf := gomas.NewConf() conf.LB = nb tau := cmat.NewMatrix(M, 1) A := cmat.NewMatrix(M, N) src := cmat.NewFloatNormSource() A.SetFrom(src) B0 := cmat.NewMatrix(M, K) B0.SetFrom(src) B := cmat.NewMatrix(N, K) // B = A.T*B0 blasd.Mult(B, A, B0, 1.0, 0.0, gomas.TRANSA, conf) W := lapackd.Workspace(lapackd.LQFactorWork(A, conf)) lapackd.LQFactor(A, tau, W, conf) // B' = A.-1*B lapackd.LQSolve(B, A, tau, W, gomas.TRANS, conf) // expect B[0:M,0:K] == B0[0:M,0:K], B[M:N,0:K] == 0 var X cmat.FloatMatrix X.SubMatrix(B, 0, 0, M, K) blasd.Plus(&X, B0, 1.0, -1.0, gomas.NONE) nrm := lapackd.NormP(&X, lapackd.NORM_ONE) t.Logf("M=%d, N=%d ||B0 - min( ||A.T*X - B0|| ) ||_1: %e\n", M, N, nrm) }
func TestBlockedDecomposeCHOL(t *testing.T) { N := 119 nb := 16 conf := gomas.NewConf() conf.LB = nb Z := cmat.NewMatrix(N, N) AL := cmat.NewMatrix(N, N) AU := cmat.NewMatrix(N, N) unitrand := cmat.NewFloatUniformSource() Z.SetFrom(unitrand) blasd.Mult(AL, Z, Z, 1.0, 0.0, gomas.TRANSB) AU.Copy(AL) eu := lapackd.CHOLFactor(AU, gomas.UPPER, conf) el := lapackd.CHOLFactor(AL, gomas.LOWER, conf) _, _ = eu, el Z.Transpose(AU) if N < 10 { t.Logf("AU.T:\n%v\n", Z) t.Logf("AL:\n%v\n", AL) } ok := AL.AllClose(Z) t.Logf("Decompose(AL) == Decompose(AU).T: %v\n", ok) }
// m > n: A[m,n], I[m,m] --> A == I*A == Q*Q.T*A func TestQRTMultLeftIdent(t *testing.T) { M := 411 N := 399 nb := 16 A := cmat.NewMatrix(M, N) T := cmat.NewMatrix(nb, N) zeromean := cmat.NewFloatNormSource() A.SetFrom(zeromean) A0 := cmat.NewCopy(A) C := cmat.NewCopy(A) conf := gomas.NewConf() conf.LB = nb //t.Logf("A0:\n%v\n", A0) // QR = A = Q*R W := lapackd.Workspace(lapackd.QRTFactorWork(A, conf)) lapackd.QRTFactor(A, T, W, conf) //t.Logf("T:\n%v\n", T) // C = Q.T*A W = lapackd.Workspace(lapackd.QRTMultWork(C, T, gomas.LEFT, conf)) lapackd.QRTMult(C, A, T, W, gomas.LEFT|gomas.TRANS, conf) // C = Q*C == Q*Q.T*A lapackd.QRTMult(C, A, T, W, gomas.LEFT, conf) //t.Logf("A*Q*Q.T:\n%v\n", C) // A = A - Q*Q.T*A blasd.Plus(A0, C, 1.0, -1.0, gomas.NONE) // ||A - Q*Q.T*A||_1 nrm := lapackd.NormP(A0, lapackd.NORM_ONE) t.Logf("M=%d,N=%d ||A - Q*Q.T*A||_1: %e\n", M, N, nrm) }
// test that unblocked and blocked QRT are equal func TestDecomposeQRT(t *testing.T) { M := 615 N := 591 nb := 16 conf := gomas.NewConf() conf.LB = nb A := cmat.NewMatrix(M, N) T := cmat.NewMatrix(nb, N) zeromean := cmat.NewFloatNormSource() A.SetFrom(zeromean) A0 := cmat.NewCopy(A) T0 := cmat.NewMatrix(N, N) // blocked: QR = A = Q*R W := lapackd.Workspace(lapackd.QRTFactorWork(A, conf)) lapackd.QRTFactor(A, T, W, conf) conf.LB = 0 lapackd.QRTFactor(A0, T0, W, conf) ok := A.AllClose(A0) t.Logf("blk.DecomposeQRT(A) == unblk.DecomposeQRT(A): %v\n", ok) }
// QR decompose A, then compute ||A - Q*R||_1, should be small func TestUnblkQRMultLeft(t *testing.T) { M := 711 N := 593 A := cmat.NewMatrix(M, N) tau := cmat.NewMatrix(N, 1) zeromean := cmat.NewFloatNormSource() A.SetFrom(zeromean) A0 := cmat.NewCopy(A) conf := gomas.NewConf() conf.LB = 0 // QR = A = Q*R W := lapackd.Workspace(lapackd.QRFactorWork(A, conf)) lapackd.QRFactor(A, tau, W, conf) // C = TriU(QR) = R C := cmat.TriU(cmat.NewCopy(A), cmat.NONE) // C = Q*C W = lapackd.Workspace(lapackd.QRMultWork(C, gomas.LEFT, conf)) err := lapackd.QRMult(C, A, tau, W, gomas.LEFT, conf) if err != nil { t.Logf("err: %v\n", err) } // A = A - QR blasd.Plus(A0, C, 1.0, -1.0, gomas.NONE) // ||A - Q*R||_1 nrm := lapackd.NormP(A0, lapackd.NORM_ONE) t.Logf("M=%d,N=%d ||A - Q*R||_1: %e\n", M, N, nrm) }
// QR decompose A, then compute ||A - (R.T*Q.T).T||_1, should be small func TestUnblkQRMultRight(t *testing.T) { M := 711 N := 593 A := cmat.NewMatrix(M, N) C := cmat.NewMatrix(N, M) tau := cmat.NewMatrix(N, 1) zeromean := cmat.NewFloatNormSource() A.SetFrom(zeromean) A0 := cmat.NewCopy(A) conf := gomas.NewConf() conf.LB = 0 // QR = A = Q*R W := lapackd.Workspace(lapackd.QRFactorWork(A, conf)) lapackd.QRFactor(A, tau, W, conf) // C = transpose(TriU(QR)) = R.T C.Transpose(cmat.TriU(cmat.NewCopy(A), cmat.NONE)) // C = C*Q.T = R.T*Q.T W = lapackd.Workspace(lapackd.QRMultWork(C, gomas.RIGHT, conf)) err := lapackd.QRMult(C, A, tau, W, gomas.RIGHT|gomas.TRANS, conf) if err != nil { t.Logf("err: %v\n", err) } // A = A - QR blasd.Plus(A0, C, 1.0, -1.0, gomas.TRANSB) // ||A - Q*R||_1 nrm := lapackd.NormP(A0, lapackd.NORM_ONE) t.Logf("M=%d,N=%d ||A - (R.T*Q.T).T||_1: %e\n", M, N, nrm) }
// m > n: A[m,n], I[m,m] --> A.T == A.T*I == A.T*Q*Q.T func TestBlockedQRMultRightIdent(t *testing.T) { M := 511 N := 489 A := cmat.NewMatrix(M, N) C := cmat.NewMatrix(N, M) tau := cmat.NewMatrix(N, 1) zeromean := cmat.NewFloatNormSource() A.SetFrom(zeromean) A0 := cmat.NewCopy(A) C.Transpose(A) conf := gomas.NewConf() conf.LB = 32 // QR = A = Q*R W := lapackd.Workspace(lapackd.QRFactorWork(A, conf)) lapackd.QRFactor(A, tau, W, conf) // C = A.T*Q W = lapackd.Workspace(lapackd.QRMultWork(C, gomas.RIGHT, conf)) lapackd.QRMult(C, A, tau, W, gomas.RIGHT, conf) // C = C*Q.T == A.T*Q*Q.T lapackd.QRMult(C, A, tau, W, gomas.RIGHT|gomas.TRANS, conf) //t.Logf("A*Q*Q.T:\n%v\n", C) // A = A - (A.T*Q*Q.T).T blasd.Plus(A0, C, 1.0, -1.0, gomas.TRANSB) // ||A - (A.T*Q*Q.T).T||_1 nrm := lapackd.NormP(A0, lapackd.NORM_ONE) t.Logf("M=%d,N=%d ||A - (A.T*Q*Q.T).T||_1: %e\n", M, N, nrm) }
// test: unblk.ReduceHess(A) == blk.ReduceHess(A) func TestReduceHess(t *testing.T) { N := 375 nb := 16 conf := gomas.NewConf() conf.LB = nb A := cmat.NewMatrix(N, N) tau := cmat.NewMatrix(N, 1) zeromean := cmat.NewFloatNormSource() A.SetFrom(zeromean) A0 := cmat.NewCopy(A) tau0 := cmat.NewCopy(tau) // blocked reduction W := lapackd.Workspace(lapackd.HessReduceWork(A, conf)) lapackd.HessReduce(A, tau, W, conf) // unblocked reduction conf.LB = 0 lapackd.HessReduce(A0, tau0, W, conf) ok := A.AllClose(A0) t.Logf("blk.ReduceHess(A) == unblk.ReduceHess(A): %v\n", ok) ok = tau0.AllClose(tau) t.Logf("blk HessQ.tau == unblk HessQ.tau: %v\n", ok) // ||A - A0||_1 blasd.Plus(A, A0, 1.0, -1.0, gomas.NONE) nrm := lapackd.NormP(A, lapackd.NORM_ONE) t.Logf("||H - H0||_1: %e\n", nrm) }
// test that unblocked QR and QRT are equal func TestQRFactor(t *testing.T) { M := 411 N := 375 nb := 16 conf := gomas.NewConf() conf.LB = nb A := cmat.NewMatrix(M, N) //W := cmat.NewMatrix(N, nb) tau := cmat.NewMatrix(N, 1) zeromean := cmat.NewFloatNormSource() A.SetFrom(zeromean) A0 := cmat.NewCopy(A) tau0 := cmat.NewCopy(tau) // blocked: QR = A = Q*R W := lapackd.Workspace(lapackd.QRFactorWork(A, conf)) lapackd.QRFactor(A, tau, W, conf) conf.LB = 0 lapackd.QRFactor(A0, tau0, W, conf) ok := A.AllClose(A0) t.Logf("blk.QRFactor(A) == unblk.QRFactor(A): %v\n", ok) ok = tau0.AllClose(tau) t.Logf("blk QR.tau == unblk QR.tau: %v\n", ok) }
func TestTriRedUpper(t *testing.T) { N := 843 nb := 48 conf := gomas.NewConf() conf.LB = 0 A := cmat.NewMatrix(N, N) tau := cmat.NewMatrix(N, 1) src := cmat.NewFloatNormSource() A.SetFrom(src, cmat.UPPER) A1 := cmat.NewCopy(A) tau1 := cmat.NewCopy(tau) _ = A1 W := lapackd.Workspace(N) W1 := lapackd.Workspace(N * nb) lapackd.TRDReduce(A, tau, W, gomas.UPPER, conf) conf.LB = nb lapackd.TRDReduce(A1, tau1, W1, gomas.UPPER, conf) blasd.Plus(A, A1, -1.0, 1.0, gomas.NONE) nrm := lapackd.NormP(A, lapackd.NORM_ONE) t.Logf("N=%d, ||unblk.Trired(A) - blk.Trired(A)||_1: %e\n", N, nrm) blasd.Axpy(tau, tau1, -1.0) nrm = blasd.Nrm2(tau) t.Logf(" ||unblk.Trired(tau) - blk.Trired(tau)||_1: %e\n", nrm) }
func TestLQFactor(t *testing.T) { M := 611 N := 715 nb := 32 conf := gomas.NewConf() A := cmat.NewMatrix(M, N) src := cmat.NewFloatNormSource() A.SetFrom(src) tau := cmat.NewMatrix(M, 1) A1 := cmat.NewCopy(A) tau1 := cmat.NewCopy(tau) conf.LB = 0 W := cmat.NewMatrix(M+N, 1) lapackd.LQFactor(A, tau, W, conf) conf.LB = nb W1 := lapackd.Workspace(lapackd.LQFactorWork(A1, conf)) lapackd.LQFactor(A1, tau1, W1, conf) blasd.Plus(A1, A, 1.0, -1.0, gomas.NONE) nrm := lapackd.NormP(A1, lapackd.NORM_ONE) t.Logf("M=%d, N=%d ||blk.LQ(A) - unblk.LQ(A)||_1: %e\n", M, N, nrm) }
// test: C = C*Q.T func TestQLMultRightTrans(t *testing.T) { var d, di0, di1 cmat.FloatMatrix M := 891 N := 853 lb := 36 conf := gomas.NewConf() A := cmat.NewMatrix(M, N) src := cmat.NewFloatNormSource() A.SetFrom(src) C0 := cmat.NewMatrix(N, M) d.Diag(C0, M-N) ones := cmat.NewFloatConstSource(1.0) d.SetFrom(ones) C1 := cmat.NewCopy(C0) I0 := cmat.NewMatrix(N, N) I1 := cmat.NewCopy(I0) di0.Diag(I0) di1.Diag(I1) tau := cmat.NewMatrix(N, 1) W := cmat.NewMatrix(lb*(M+N), 1) conf.LB = lb lapackd.QLFactor(A, tau, W, conf) conf.LB = 0 lapackd.QLMult(C0, A, tau, W, gomas.RIGHT|gomas.TRANS, conf) // I = Q*Q.T - I blasd.Mult(I0, C0, C0, 1.0, 0.0, gomas.TRANSB, conf) blasd.Add(&di0, -1.0) n0 := lapackd.NormP(I0, lapackd.NORM_ONE) conf.LB = lb lapackd.QLMult(C1, A, tau, W, gomas.RIGHT|gomas.TRANS, conf) // I = Q*Q.T - I blasd.Mult(I1, C1, C1, 1.0, 0.0, gomas.TRANSB, conf) blasd.Add(&di1, -1.0) n1 := lapackd.NormP(I1, lapackd.NORM_ONE) if N < 10 { t.Logf("unblk C0*Q:\n%v\n", C0) t.Logf("blk. C2*Q:\n%v\n", C1) } blasd.Plus(C0, C1, 1.0, -1.0, gomas.NONE) n2 := lapackd.NormP(C0, lapackd.NORM_ONE) t.Logf("M=%d, N=%d ||unblk.QLMult(C) - blk.QLMult(C)||_1: %e\n", M, N, n2) t.Logf("unblk M=%d, N=%d ||I - Q*Q.T||_1: %e\n", M, N, n0) t.Logf("blk M=%d, N=%d ||I - Q*Q.T||_1: %e\n", M, N, n1) }
func TestUpperCHOL(t *testing.T) { N := 311 K := 43 nb := 0 conf := gomas.NewConf() conf.LB = nb Z := cmat.NewMatrix(N, N) A := cmat.NewMatrix(N, N) A0 := cmat.NewMatrix(N, N) B := cmat.NewMatrix(N, K) X := cmat.NewMatrix(N, K) unitrand := cmat.NewFloatUniformSource() Z.SetFrom(unitrand) blasd.Mult(A, Z, Z, 1.0, 0.0, gomas.TRANSB) A0.Copy(A) B.SetFrom(unitrand) X.Copy(B) // A = chol(A) = U.T*U t.Logf("Unblocked version: nb=%d\n", conf.LB) lapackd.CHOLFactor(A, gomas.UPPER, conf) // X = A.-1*B = U.-1*(U.-T*B) lapackd.CHOLSolve(X, A, gomas.UPPER) // B = B - A*X blasd.Mult(B, A0, X, -1.0, 1.0, gomas.NONE) // ||B - A*X||_1 nrm := lapackd.NormP(B, lapackd.NORM_ONE) t.Logf("N=%d: ||B - A*X||_1: %e\n", N, nrm) // A = chol(A) = U.T*U A.Copy(A0) B.SetFrom(unitrand) X.Copy(B) conf.LB = 16 t.Logf("Blocked version: nb=%d\n", conf.LB) lapackd.CHOLFactor(A, gomas.UPPER, conf) // X = A.-1*B = U.-1*(U.-T*B) lapackd.CHOLSolve(X, A, gomas.UPPER) // B = B - A*X blasd.Mult(B, A0, X, -1.0, 1.0, gomas.NONE) // ||B - A*X||_1 nrm = lapackd.NormP(B, lapackd.NORM_ONE) t.Logf("N=%d: ||B - A*X||_1: %e\n", N, nrm) }
func TestQLBuildwithK(t *testing.T) { var dc cmat.FloatMatrix M := 711 N := 707 K := 691 lb := 36 conf := gomas.NewConf() A := cmat.NewMatrix(M, N) src := cmat.NewFloatNormSource() A.SetFrom(src) tau := cmat.NewMatrix(N, 1) W := cmat.NewMatrix(M+N, 1) C := cmat.NewMatrix(N, N) conf.LB = lb lapackd.QLFactor(A, tau, W, conf) A1 := cmat.NewCopy(A) conf.LB = 0 lapackd.QLBuild(A, tau, W, K, conf) blasd.Mult(C, A, A, 1.0, 0.0, gomas.TRANSA, conf) dc.Diag(C) blasd.Add(&dc, -1.0) if N < 10 { t.Logf("unblk.QLBuild Q:\n%v\n", A) t.Logf("unblk.QLBuild Q.T*Q:\n%v\n", C) } n0 := lapackd.NormP(C, lapackd.NORM_ONE) conf.LB = lb W1 := lapackd.Workspace(lapackd.QLBuildWork(A1, conf)) lapackd.QLBuild(A1, tau, W1, K, conf) if N < 10 { t.Logf("blk.QLBuild Q:\n%v\n", A1) } // compute: I - Q.T*Q blasd.Mult(C, A1, A1, 1.0, 0.0, gomas.TRANSA, conf) blasd.Add(&dc, -1.0) n1 := lapackd.NormP(C, lapackd.NORM_ONE) blasd.Plus(A, A1, 1.0, -1.0, gomas.NONE) n2 := lapackd.NormP(A, lapackd.NORM_ONE) t.Logf("M=%d, N=%d, K=%d ||unblk.QLBuild(A) - blk.QLBuild(A)||_1 :%e\n", M, N, K, n2) t.Logf("unblk M=%d, N=%d, K=%d ||Q.T*Q - I||_1 : %e\n", M, N, K, n0) t.Logf("blk M=%d, N=%d, K=%d ||Q.T*Q - I||_1 : %e\n", M, N, K, n1) }
func TestTrdMultUpper(t *testing.T) { var dt, et, da, ea cmat.FloatMatrix N := 843 nb := 48 conf := gomas.NewConf() conf.LB = nb A := cmat.NewMatrix(N, N) tau := cmat.NewMatrix(N, 1) src := cmat.NewFloatNormSource() // create symmetric matrix A.SetFrom(src, cmat.SYMM) A0 := cmat.NewCopy(A) W := lapackd.Workspace(lapackd.TRDReduceWork(A, conf)) lapackd.TRDReduce(A, tau, W, gomas.UPPER, conf) // make tridiagonal matrix T T0 := cmat.NewMatrix(N, N) dt.Diag(T0) da.Diag(A) blasd.Copy(&dt, &da) ea.Diag(A, 1) et.Diag(T0, 1) blasd.Copy(&et, &ea) et.Diag(T0, -1) blasd.Copy(&et, &ea) T1 := cmat.NewCopy(T0) // compute Q*T*Q.T (unblocked) conf.LB = 0 lapackd.TRDMult(T0, A, tau, W, gomas.LEFT|gomas.UPPER, conf) lapackd.TRDMult(T0, A, tau, W, gomas.RIGHT|gomas.TRANS|gomas.UPPER, conf) blasd.Plus(T0, A0, 1.0, -1.0, gomas.NONE) nrm := lapackd.NormP(T0, lapackd.NORM_ONE) t.Logf("N=%d, unblk.||A - Q*T*Q.T||_1: %e\n", N, nrm) // compute Q*T*Q.T (blocked) conf.LB = nb W = lapackd.Workspace(lapackd.TRDMultWork(A, gomas.LEFT|gomas.UPPER, conf)) lapackd.TRDMult(T1, A, tau, W, gomas.LEFT|gomas.UPPER, conf) lapackd.TRDMult(T1, A, tau, W, gomas.RIGHT|gomas.TRANS|gomas.UPPER, conf) blasd.Plus(T1, A0, 1.0, -1.0, gomas.NONE) nrm = lapackd.NormP(T1, lapackd.NORM_ONE) t.Logf("N=%d, blk.||A - Q*T*Q.T||_1: %e\n", N, nrm) }
func TestLQBuild(t *testing.T) { var dc cmat.FloatMatrix M := 877 N := 913 K := 831 lb := 48 conf := gomas.NewConf() _ = lb A := cmat.NewMatrix(M, N) src := cmat.NewFloatNormSource() A.SetFrom(src) tau := cmat.NewMatrix(M, 1) W := cmat.NewMatrix(M, 1) C := cmat.NewMatrix(M, M) dc.Diag(C) conf.LB = lb lapackd.LQFactor(A, tau, W, conf) A1 := cmat.NewCopy(A) conf.LB = 0 lapackd.LQBuild(A, tau, W, K, conf) if N < 10 { t.Logf("unblk.LQBuild Q:\n%v\n", A) } blasd.Mult(C, A, A, 1.0, 0.0, gomas.TRANSB, conf) blasd.Add(&dc, -1.0) n0 := lapackd.NormP(C, lapackd.NORM_ONE) conf.LB = lb W2 := lapackd.Workspace(lapackd.LQBuildWork(A, conf)) lapackd.LQBuild(A1, tau, W2, K, conf) if N < 10 { t.Logf("blk.LQBuild Q:\n%v\n", A1) } blasd.Mult(C, A1, A1, 1.0, 0.0, gomas.TRANSB, conf) blasd.Add(&dc, -1.0) n1 := lapackd.NormP(C, lapackd.NORM_ONE) blasd.Plus(A, A1, 1.0, -1.0, gomas.NONE) n2 := lapackd.NormP(A, lapackd.NORM_ONE) t.Logf("M=%d, N=%d, K=%d ||unblk.LQBuild(A) - blk.LQBuild(A)||_1 :%e\n", M, N, K, n2) t.Logf("unblk M=%d, N=%d, K=%d ||I - Q*Q.T||_1 : %e\n", M, N, K, n0) t.Logf(" blk M=%d, N=%d, K=%d ||I - Q*Q.T||_1 : %e\n", M, N, K, n1) }
func TestBiredWide(t *testing.T) { N := 811 M := 693 nb := 32 conf := gomas.NewConf() conf.LB = 0 ediag := -1 zeromean := cmat.NewFloatNormSource() A := cmat.NewMatrix(M, N) A.SetFrom(zeromean) A0 := cmat.NewCopy(A) tauq := cmat.NewMatrix(N, 1) taup := cmat.NewMatrix(N, 1) W := lapackd.Workspace(M + N) lapackd.BDReduce(A, tauq, taup, W, conf) var D, E, Bd, Be cmat.FloatMatrix D.Diag(A) E.Diag(A, ediag) B := cmat.NewMatrix(M, N) Bd.Diag(B) Be.Diag(B, ediag) blasd.Copy(&Bd, &D) blasd.Copy(&Be, &E) Bt := cmat.NewMatrix(N, M) blasd.Transpose(Bt, B) conf.LB = nb W0 := lapackd.Workspace(lapackd.BDMultWork(B, conf)) lapackd.BDMult(B, A, tauq, W0, gomas.MULTQ|gomas.LEFT, conf) lapackd.BDMult(Bt, A, tauq, W0, gomas.MULTQ|gomas.RIGHT|gomas.TRANS, conf) lapackd.BDMult(B, A, taup, W0, gomas.MULTP|gomas.RIGHT|gomas.TRANS, conf) lapackd.BDMult(Bt, A, taup, W0, gomas.MULTP|gomas.LEFT, conf) blasd.Plus(B, A0, 1.0, -1.0, gomas.NONE) nrm := lapackd.NormP(B, lapackd.NORM_ONE) t.Logf("M=%d, N=%d ||A - Q*B*P.T||_1 : %e\n", M, N, nrm) blasd.Plus(Bt, A0, 1.0, -1.0, gomas.TRANSB) nrm = lapackd.NormP(Bt, lapackd.NORM_ONE) t.Logf("M=%d, N=%d ||A.T - P*B.T*Q.T||_1 : %e\n", M, N, nrm) }
// test: A - Q*Hess(A)*Q.T == 0 func TestMultHess(t *testing.T) { N := 377 nb := 16 conf := gomas.NewConf() conf.LB = nb A := cmat.NewMatrix(N, N) tau := cmat.NewMatrix(N, 1) zeromean := cmat.NewFloatNormSource() A.SetFrom(zeromean) A0 := cmat.NewCopy(A) // reduction W := lapackd.Workspace(lapackd.HessReduceWork(A, conf)) lapackd.HessReduce(A, tau, W, conf) var Hlow cmat.FloatMatrix H := cmat.NewCopy(A) // set triangular part below first subdiagonal to zeros zeros := cmat.NewFloatConstSource(0.0) Hlow.SubMatrix(H, 1, 0, N-1, N-1) Hlow.SetFrom(zeros, cmat.LOWER|cmat.UNIT) H1 := cmat.NewCopy(H) // H := Q*H*Q.T conf.LB = nb lapackd.HessMult(H, A, tau, W, gomas.LEFT, conf) lapackd.HessMult(H, A, tau, W, gomas.RIGHT|gomas.TRANS, conf) // H := Q*H*Q.T conf.LB = 0 lapackd.HessMult(H1, A, tau, W, gomas.LEFT, conf) lapackd.HessMult(H1, A, tau, W, gomas.RIGHT|gomas.TRANS, conf) // compute ||Q*Hess(A)*Q.T - A||_1 blasd.Plus(H, A0, 1.0, -1.0, gomas.NONE) nrm := lapackd.NormP(H, lapackd.NORM_ONE) t.Logf(" blk.|| Q*Hess(A)*Q.T - A ||_1 : %e\n", nrm) blasd.Plus(H1, A0, 1.0, -1.0, gomas.NONE) nrm = lapackd.NormP(H1, lapackd.NORM_ONE) t.Logf("unblk.|| Q*Hess(A)*Q.T - A ||_1 : %e\n", nrm) }
func TestQRBuild(t *testing.T) { var d cmat.FloatMatrix M := 911 N := 899 K := 873 lb := 36 conf := gomas.NewConf() A := cmat.NewMatrix(M, N) src := cmat.NewFloatNormSource() A.SetFrom(src) tau := cmat.NewMatrix(N, 1) W := cmat.NewMatrix(N+M, 1) C := cmat.NewMatrix(N, N) d.Diag(C) conf.LB = lb lapackd.QRFactor(A, tau, W, conf) A1 := cmat.NewCopy(A) conf.LB = 0 lapackd.QRBuild(A, tau, W, K, conf) blasd.Mult(C, A, A, 1.0, 0.0, gomas.TRANSA, conf) blasd.Add(&d, -1.0) n0 := lapackd.NormP(C, lapackd.NORM_ONE) conf.LB = lb W2 := lapackd.Workspace(lapackd.QRBuildWork(A, conf)) lapackd.QRBuild(A1, tau, W2, K, conf) blasd.Mult(C, A1, A1, 1.0, 0.0, gomas.TRANSA, conf) blasd.Add(&d, -1.0) n1 := lapackd.NormP(C, lapackd.NORM_ONE) blasd.Plus(A, A1, 1.0, -1.0, gomas.NONE) n2 := lapackd.NormP(A, lapackd.NORM_ONE) t.Logf("M=%d, N=%d, K=%d ||unblk.QRBuild(A) - blk.QRBuild(A)||_1 :%e\n", M, N, K, n2) t.Logf("unblk M=%d, N=%d, K=%d ||I - Q.T*Q||_1: %e\n", M, N, K, n0) t.Logf(" blk M=%d, N=%d, K=%d ||I - Q.T*Q||_1: %e\n", M, N, K, n1) }
func TestDSyrkUpper(t *testing.T) { var ok bool conf := gomas.NewConf() A := cmat.NewMatrix(N, N) A0 := cmat.NewMatrix(N, N) B := cmat.NewMatrix(N, K) Bt := cmat.NewMatrix(K, N) ones := cmat.NewFloatConstSource(1.0) zeromean := cmat.NewFloatUniformSource() _, _ = ones, zeromean A.SetFrom(ones, cmat.UPPER) A0.Copy(A) B.SetFrom(ones) Bt.Transpose(B) // B = A*B blasd.UpdateSym(A, B, 1.0, 1.0, gomas.UPPER, conf) blasd.Mult(A0, B, B, 1.0, 1.0, gomas.TRANSB) cmat.TriU(A0, cmat.NONE) ok = A0.AllClose(A) t.Logf("UpdateSym(A, B, U|N) == TriU(Mult(A, B, B.T)) : %v\n", ok) if N < 10 { t.Logf("UpdateSym(A, B)\n%v\n", A) t.Logf("Mult(A, B.T, B)\n%v\n", A0) } A.SetFrom(ones, cmat.UPPER) A0.Copy(A) blasd.UpdateSym(A, Bt, 1.0, 1.0, gomas.UPPER|gomas.TRANSA, conf) blasd.Mult(A0, Bt, Bt, 1.0, 1.0, gomas.TRANSA) cmat.TriU(A0, cmat.NONE) ok = A0.AllClose(A) t.Logf("UpdateSym(A, B, U|T) == TriU(Mult(A, B.T, B)) : %v\n", ok) if N < 10 { t.Logf("UpdateSym(A, B)\n%v\n", A) t.Logf("Mult(A, B.T, B)\n%v\n", A0) } }
// test: unblk.QLFactor == blk.QLFactor func TestQLFactor(t *testing.T) { var t0 cmat.FloatMatrix M := 911 N := 835 nb := 32 conf := gomas.NewConf() A := cmat.NewMatrix(M, N) src := cmat.NewFloatNormSource() A.SetFrom(src) tau := cmat.NewMatrix(M, 1) W := cmat.NewMatrix(M+N, 1) A1 := cmat.NewCopy(A) tau1 := cmat.NewCopy(tau) conf.LB = 0 lapackd.QLFactor(A, tau, W, conf) conf.LB = nb W1 := lapackd.Workspace(lapackd.QLFactorWork(A1, conf)) lapackd.QLFactor(A1, tau1, W1, conf) if N < 10 { t.Logf("unblkQL(A):\n%v\n", A) t0.SetBuf(1, tau.Len(), 1, tau.Data()) t.Logf("unblkQL.tau:\n%v\n", &t0) t.Logf("blkQL(A):\n%v\n", A1) t0.SetBuf(1, tau1.Len(), 1, tau1.Data()) t.Logf("blkQL.tau:\n%v\n", &t0) } blasd.Plus(A1, A, 1.0, -1.0, gomas.NONE) nrm := lapackd.NormP(A1, lapackd.NORM_ONE) t.Logf("M=%d, N=%d ||blkQL(A) - unblkQL(A)||_1: %e\n", M, N, nrm) blasd.Axpy(tau1, tau, -1.0) nrm = blasd.Nrm2(tau1) t.Logf(" ||blkQL.tau - unblkQL.tau||_1: %e\n", nrm) }
// test: min || B - A*X || func TestLeastSquaresQR(t *testing.T) { M := 811 N := 723 K := 311 nb := 32 conf := gomas.NewConf() conf.LB = nb tau := cmat.NewMatrix(N, 1) A := cmat.NewMatrix(M, N) src := cmat.NewFloatNormSource() A.SetFrom(src) B0 := cmat.NewMatrix(N, K) B0.SetFrom(src) B := cmat.NewMatrix(M, K) // B = A*B0 blasd.Mult(B, A, B0, 1.0, 0.0, gomas.NONE, conf) W := lapackd.Workspace(lapackd.QRFactorWork(A, conf)) err := lapackd.QRFactor(A, tau, W, conf) if err != nil { t.Logf("DecomposeQR: %v\n", err) } // B' = A.-1*B err = lapackd.QRSolve(B, A, tau, W, gomas.NONE, conf) if err != nil { t.Logf("SolveQR: %v\n", err) } // expect B[0:N,0:K] == B0[0:N,0:K], B[N:M,0:K] == 0 var X cmat.FloatMatrix X.SubMatrix(B, 0, 0, N, K) blasd.Plus(&X, B0, 1.0, -1.0, gomas.NONE) nrm := lapackd.NormP(&X, lapackd.NORM_ONE) t.Logf("M=%d, N=%d ||B0 - min( ||A*X - B0|| ) ||_1: %e\n", M, N, nrm) }
// test: ||C - Q*Q.T*C||_1 ~= 0; // multipling from left requires: m(C) == n(A) [n(Q)] func TestLQMultLeft(t *testing.T) { M := 771 N := 813 nb := 16 conf := gomas.NewConf() A := cmat.NewMatrix(M, N) src := cmat.NewFloatNormSource() A.SetFrom(src) // C0 := A C0 := cmat.NewCopy(A) C1t := cmat.NewMatrix(N, M) blasd.Transpose(C1t, C0) C2t := cmat.NewCopy(C1t) tau := cmat.NewMatrix(M, 1) W := cmat.NewMatrix(M+N, 1) conf.LB = 0 lapackd.LQFactor(A, tau, W, conf) // A0 := Q.T*A0 conf.LB = 0 lapackd.LQMult(C2t, A, tau, W, gomas.LEFT, conf) lapackd.LQMult(C2t, A, tau, W, gomas.LEFT|gomas.TRANS, conf) // A0 := Q.T*A0 conf.LB = nb W1 := lapackd.Workspace(lapackd.LQMultWork(C1t, gomas.LEFT, conf)) lapackd.LQMult(C1t, A, tau, W1, gomas.LEFT, conf) lapackd.LQMult(C1t, A, tau, W1, gomas.LEFT|gomas.TRANS, conf) blasd.Plus(C0, C1t, 1.0, -1.0, gomas.TRANSB) nrm := lapackd.NormP(C0, lapackd.NORM_ONE) t.Logf("M=%d, N=%d, ||C - Q*Q*T*C||_1: %e\n", M, N, nrm) blasd.Plus(C1t, C2t, 1.0, -1.0, gomas.NONE) nrm = lapackd.NormP(C1t, lapackd.NORM_ONE) t.Logf("M=%d, N=%d, ||unblk(Q*Q.T*C) - blk(Q*Q*T*C)||_1: %e\n", M, N, nrm) }
// test: ||A - A*Q*Q.T||_1 ~= 0 func TestLQMultRight(t *testing.T) { M := 511 N := 627 nb := 24 conf := gomas.NewConf() A := cmat.NewMatrix(M, N) src := cmat.NewFloatNormSource() A.SetFrom(src) tau := cmat.NewMatrix(M, 1) W := cmat.NewMatrix(M+N, 1) A0 := cmat.NewCopy(A) A1 := cmat.NewCopy(A) A2 := cmat.NewCopy(A) conf.LB = 0 lapackd.LQFactor(A, tau, W, conf) // unblocked A1 := A1*Q*Q.T conf.LB = 0 lapackd.LQMult(A1, A, tau, W, gomas.RIGHT, conf) lapackd.LQMult(A1, A, tau, W, gomas.RIGHT|gomas.TRANS, conf) // blocked A2 := A2*Q*Q.T conf.LB = nb W = lapackd.Workspace(lapackd.LQMultWork(A2, gomas.RIGHT, conf)) lapackd.LQMult(A2, A, tau, W, gomas.RIGHT, conf) lapackd.LQMult(A2, A, tau, W, gomas.RIGHT|gomas.TRANS, conf) // A1 - A0 == 0 blasd.Plus(A1, A0, 1.0, -1.0, gomas.NONE) nrm := lapackd.NormP(A1, lapackd.NORM_ONE) t.Logf("M=%d, N=%d, unblk.||A - A*Q*Q.T||_1: %e\n", M, N, nrm) // A2 - A0 == 0 blasd.Plus(A2, A0, 1.0, -1.0, gomas.NONE) nrm = lapackd.NormP(A2, lapackd.NORM_ONE) t.Logf("M=%d, N=%d, nb=%d blk.||A - A*Q*Q.T||_1: %e\n", M, N, nb, nrm) }
func TestBKLowerBig(t *testing.T) { N := 411 normsrc := cmat.NewFloatNormSource(5.0, 10.0) A := cmat.NewMatrix(N, N) A.SetFrom(normsrc, cmat.LOWER) A0 := cmat.NewCopy(A) ipiv := lapackd.NewPivots(N) ipiv0 := lapackd.NewPivots(N) conf := gomas.NewConf() conf.LB = 0 // unblocked W := lapackd.Workspace(lapackd.BKFactorWork(A, conf)) err := lapackd.BKFactor(A, W, ipiv, gomas.LOWER, conf) if err != nil { t.Logf("unblk.err: %v\n", err) } // blocked conf.LB = 8 W = lapackd.Workspace(lapackd.BKFactorWork(A0, conf)) err = lapackd.BKFactor(A0, W, ipiv0, gomas.LOWER, conf) if err != nil { t.Logf("blk.err: %v\n", err) } ok := A.AllClose(A0) t.Logf("N=%d unblk.A == blk.A : %v\n", N, ok) if !ok { r, c := errorLoc(A, A0) t.Logf("unblk.A != blk.A at: %d, %d\n", r, c) for k, _ := range ipiv { t.Logf("%3d %3d %3d\n", k, ipiv[k], ipiv0[k]) } } }
// m > n: A[m,n], I[m,m] --> A.T == A.T*I == A.T*Q*Q.T func TestQRTMultRightIdent(t *testing.T) { M := 511 N := 399 nb := 16 A := cmat.NewMatrix(M, N) C := cmat.NewMatrix(N, M) T := cmat.NewMatrix(nb, N) zeromean := cmat.NewFloatNormSource() A.SetFrom(zeromean) A0 := cmat.NewCopy(A) C.Transpose(A) conf := gomas.NewConf() conf.LB = nb // QR = A = Q*R W := lapackd.Workspace(lapackd.QRTFactorWork(A, conf)) lapackd.QRTFactor(A, T, W, conf) // C = A*Q W = lapackd.Workspace(lapackd.QRTMultWork(C, T, gomas.RIGHT, conf)) err := lapackd.QRTMult(C, A, T, W, gomas.RIGHT, conf) if err != nil { t.Logf("err: %v\n", err) } // C = C*Q.T == A*Q*Q.T err = lapackd.QRTMult(C, A, T, W, gomas.RIGHT|gomas.TRANS, conf) if err != nil { t.Logf("err: %v\n", err) } // A = A - (A.T*Q*Q.T).T blasd.Plus(A0, C, 1.0, -1.0, gomas.TRANSB) // ||A - Q*R||_1 nrm := lapackd.NormP(A0, lapackd.NORM_ONE) t.Logf("M=%d,N=%d ||A - (A.T*Q*Q.T).T||_1: %e\n", M, N, nrm) }
// QR decompose A, then compute ||A - Q*R||_1, should be small func TestMultQTLeft(t *testing.T) { M := 513 N := 477 nb := 16 A := cmat.NewMatrix(M, N) T := cmat.NewMatrix(nb, N) zeromean := cmat.NewFloatNormSource() A.SetFrom(zeromean) A0 := cmat.NewCopy(A) conf := gomas.NewConf() conf.LB = nb //t.Logf("A0:\n%v\n", A0) // QR = A = Q*R W := lapackd.Workspace(lapackd.QRTFactorWork(A, conf)) lapackd.QRTFactor(A, T, W, conf) //t.Logf("T:\n%v\n", T) // C = TriU(QR) = R C := cmat.TriU(cmat.NewCopy(A), cmat.NONE) //t.Logf("R:\n%v\n", C) // C = Q*C W = lapackd.Workspace(lapackd.QRTMultWork(C, T, gomas.LEFT, conf)) err := lapackd.QRTMult(C, A, T, W, gomas.LEFT, conf) if err != nil { t.Logf("err: %v\n", err) } // A = A - QR blasd.Plus(A0, C, 1.0, -1.0, gomas.NONE) // ||A - Q*R||_1 nrm := lapackd.NormP(A0, lapackd.NORM_ONE) t.Logf("M=%d,N=%d ||A - Q*R||_1: %e\n", M, N, nrm) }