// Computes analytic center of A*x <= b with A m by n of rank n. // We assume that b > 0 and the feasible set is bounded. func Acent(A, b *matrix.FloatMatrix, niters int) (*matrix.FloatMatrix, []float64) { if niters <= 0 { niters = MAXITERS } ntdecrs := make([]float64, 0, niters) if A.Rows() != b.Rows() { return nil, nil } m, n := A.Size() x := matrix.FloatZeros(n, 1) H := matrix.FloatZeros(n, n) // Helper m*n matrix Dmn := matrix.FloatZeros(m, n) for i := 0; i < niters; i++ { // Gradient is g = A^T * (1.0/(b - A*x)). d = 1.0/(b - A*x) // d is m*1 matrix, g is n*1 matrix d := matrix.Minus(b, matrix.Times(A, x)).Inv() g := matrix.Times(A.Transpose(), d) // Hessian is H = A^T * diag(1./(b-A*x))^2 * A. // in the original python code expression d[:,n*[0]] creates // a m*n matrix where each column is copy of column 0. // We do it here manually. for i := 0; i < n; i++ { Dmn.SetColumn(i, d) } // Function mul creates element wise product of matrices. Asc := matrix.Mul(Dmn, A) blas.SyrkFloat(Asc, H, 1.0, 0.0, linalg.OptTrans) // Newton step is v = H^-1 * g. v := g.Copy().Scale(-1.0) lapack.PosvFloat(H, v) // Directional derivative and Newton decrement. lam := blas.DotFloat(g, v) ntdecrs = append(ntdecrs, math.Sqrt(-lam)) if ntdecrs[len(ntdecrs)-1] < TOL { fmt.Printf("last Newton decrement < TOL(%v)\n", TOL) return x, ntdecrs } // Backtracking line search. // y = d .* A*v y := d.Mul(A.Times(v)) step := 1.0 for 1-step*y.Max() < 0 { step *= BETA } search: for { // t = -step*y t := y.Copy().Scale(-step) // t = (1 + t) [e.g. t = 1 - step*y] t.Add(1.0) // ts = sum(log(1-step*y)) ts := t.Log().Sum() if -ts < ALPHA*step*lam { break search } step *= BETA } v.Scale(step) x = x.Plus(v) } // no solution !! fmt.Printf("Iteration %d exhausted\n", niters) return x, ntdecrs }
func main() { m := 6 Vdata := [][]float64{ []float64{1.0, -1.0, -2.0, -2.0, 0.0, 1.5, 1.0}, []float64{1.0, 2.0, 1.0, -1.0, -2.0, -1.0, 1.0}} V := matrix.FloatMatrixFromTable(Vdata, matrix.RowOrder) // V[1, :m] - V[1,1:] a0 := matrix.Minus(V.GetSubMatrix(1, 0, 1, m), V.GetSubMatrix(1, 1, 1)) // V[0, :m] - V[0,1:] a1 := matrix.Minus(V.GetSubMatrix(0, 0, 1, m), V.GetSubMatrix(0, 1, 1)) A0, _ := matrix.FloatMatrixStacked(matrix.StackDown, a0.Scale(-1.0), a1) A0 = A0.Transpose() b0 := matrix.Mul(A0, V.GetSubMatrix(0, 0, 2, m).Transpose()) b0 = matrix.Times(b0, matrix.FloatWithValue(2, 1, 1.0)) A := make([]*matrix.FloatMatrix, 0) b := make([]*matrix.FloatMatrix, 0) A = append(A, A0) b = append(b, b0) // List of symbols C := make([]*matrix.FloatMatrix, 0) C = append(C, matrix.FloatZeros(2, 1)) var row *matrix.FloatMatrix = nil for k := 0; k < m; k++ { row = A0.GetRow(k, row) nrm := blas.Nrm2Float(row) row.Scale(2.0 * b0.GetIndex(k) / (nrm * nrm)) C = append(C, row.Transpose()) } // Voronoi set around C[1] A1 := matrix.FloatZeros(3, 2) A1.SetSubMatrix(0, 0, A0.GetSubMatrix(0, 0, 1).Scale(-1.0)) A1.SetSubMatrix(1, 0, matrix.Minus(C[m], C[1]).Transpose()) A1.SetSubMatrix(2, 0, matrix.Minus(C[2], C[1]).Transpose()) b1 := matrix.FloatZeros(3, 1) b1.SetIndex(0, -b0.GetIndex(0)) v := matrix.Times(A1.GetRow(1, nil), matrix.Plus(C[m], C[1])).Float() * 0.5 b1.SetIndex(1, v) v = matrix.Times(A1.GetRow(2, nil), matrix.Plus(C[2], C[1])).Float() * 0.5 b1.SetIndex(2, v) A = append(A, A1) b = append(b, b1) // Voronoi set around C[2] ... C[5] for k := 2; k < 6; k++ { A1 = matrix.FloatZeros(3, 2) A1.SetSubMatrix(0, 0, A0.GetSubMatrix(k-1, 0, 1).Scale(-1.0)) A1.SetSubMatrix(1, 0, matrix.Minus(C[k-1], C[k]).Transpose()) A1.SetSubMatrix(2, 0, matrix.Minus(C[k+1], C[k]).Transpose()) b1 = matrix.FloatZeros(3, 1) b1.SetIndex(0, -b0.GetIndex(k-1)) v := matrix.Times(A1.GetRow(1, nil), matrix.Plus(C[k-1], C[k])).Float() * 0.5 b1.SetIndex(1, v) v = matrix.Times(A1.GetRow(2, nil), matrix.Plus(C[k+1], C[k])).Float() * 0.5 b1.SetIndex(2, v) A = append(A, A1) b = append(b, b1) } // Voronoi set around C[6] A1 = matrix.FloatZeros(3, 2) A1.SetSubMatrix(0, 0, A0.GetSubMatrix(5, 0, 1).Scale(-1.0)) A1.SetSubMatrix(1, 0, matrix.Minus(C[1], C[6]).Transpose()) A1.SetSubMatrix(2, 0, matrix.Minus(C[5], C[6]).Transpose()) b1 = matrix.FloatZeros(3, 1) b1.SetIndex(0, -b0.GetIndex(5)) v = matrix.Times(A1.GetRow(1, nil), matrix.Plus(C[1], C[6])).Float() * 0.5 b1.SetIndex(1, v) v = matrix.Times(A1.GetRow(2, nil), matrix.Plus(C[5], C[6])).Float() * 0.5 b1.SetIndex(2, v) A = append(A, A1) b = append(b, b1) P := matrix.FloatIdentity(2) q := matrix.FloatZeros(2, 1) solopts := &cvx.SolverOptions{ShowProgress: false, MaxIter: 30} ovals := make([]float64, 0) for k := 1; k < 7; k++ { sol, err := cvx.Qp(P, q, A[k], b[k], nil, nil, solopts, nil) _ = err x := sol.Result.At("x")[0] ovals = append(ovals, math.Pow(blas.Nrm2Float(x), 2.0)) } optvals := matrix.FloatVector(ovals) //fmt.Printf("optvals=\n%v\n", optvals) rangeFunc := func(n int) []float64 { r := make([]float64, 0) for i := 0; i < n; i++ { r = append(r, float64(i)) } return r } nopts := 200 sigmas := matrix.FloatVector(rangeFunc(nopts)) sigmas.Scale((0.5 - 0.2) / float64(nopts)).Add(0.2) bndsVal := func(sigma float64) float64 { // 1.0 - sum(exp( -optvals/(2*sigma**2))) return 1.0 - matrix.Exp(matrix.Scale(optvals, -1.0/(2*sigma*sigma))).Sum() } bnds := matrix.FloatZeros(sigmas.NumElements(), 1) for j, v := range sigmas.FloatArray() { bnds.SetIndex(j, bndsVal(v)) } plotData("plot.png", sigmas.FloatArray(), bnds.FloatArray()) }