// createVarRefIterator creates an iterator for a variable reference. func (e *Engine) createVarRefIterator(opt influxql.IteratorOptions) ([]influxql.Iterator, error) { ref, _ := opt.Expr.(*influxql.VarRef) var itrs []influxql.Iterator if err := func() error { mms := tsdb.Measurements(e.index.MeasurementsByName(influxql.Sources(opt.Sources).Names())) // Retrieve the maximum number of fields (without time). conditionFields := make([]string, len(influxql.ExprNames(opt.Condition))) for _, mm := range mms { // Determine tagsets for this measurement based on dimensions and filters. tagSets, err := mm.TagSets(opt.Dimensions, opt.Condition) if err != nil { return err } // Calculate tag sets and apply SLIMIT/SOFFSET. tagSets = influxql.LimitTagSets(tagSets, opt.SLimit, opt.SOffset) for _, t := range tagSets { for i, seriesKey := range t.SeriesKeys { fields := 0 if t.Filters[i] != nil { // Retrieve non-time fields from this series filter and filter out tags. for _, f := range influxql.ExprNames(t.Filters[i]) { if mm.HasField(f) { conditionFields[fields] = f fields++ } } } itr, err := e.createVarRefSeriesIterator(ref, mm, seriesKey, t, t.Filters[i], conditionFields[:fields], opt) if err != nil { return err } else if itr == nil { continue } itrs = append(itrs, itr) } } } return nil }(); err != nil { influxql.Iterators(itrs).Close() return nil, err } return itrs, nil }
// ReadAll reads all points from all iterators. func (itrs Iterators) ReadAll() [][]influxql.Point { var a [][]influxql.Point // Read from every iterator until a nil is encountered. for { points := itrs.Next() if points == nil { break } a = append(a, points) } // Close all iterators. influxql.Iterators(itrs).Close() return a }
// createTagKeysIterator returns an iterator for all tag keys across measurements. func (a Shards) createTagKeysIterator(opt influxql.IteratorOptions) (influxql.Iterator, error) { itrs := make([]influxql.Iterator, 0, len(a)) if err := func() error { for _, sh := range a { itr, err := NewTagKeysIterator(sh, opt) if err != nil { return err } itrs = append(itrs, itr) } return nil }(); err != nil { influxql.Iterators(itrs).Close() return nil, err } return influxql.NewMergeIterator(itrs, opt), nil }
// createVarRefIterator creates an iterator for a variable reference. func (e *Engine) createVarRefIterator(opt influxql.IteratorOptions) ([]influxql.Iterator, error) { ref, _ := opt.Expr.(*influxql.VarRef) var itrs []influxql.Iterator if err := func() error { mms := tsdb.Measurements(e.index.MeasurementsByName(influxql.Sources(opt.Sources).Names())) for _, mm := range mms { // Determine tagsets for this measurement based on dimensions and filters. tagSets, err := mm.TagSets(opt.Dimensions, opt.Condition) if err != nil { return err } // Calculate tag sets and apply SLIMIT/SOFFSET. tagSets = influxql.LimitTagSets(tagSets, opt.SLimit, opt.SOffset) for _, t := range tagSets { inputs, err := e.createTagSetIterators(ref, mm, t, opt) if err != nil { return err } if len(inputs) > 0 && (opt.Limit > 0 || opt.Offset > 0) { var itr influxql.Iterator if opt.MergeSorted() { itr = influxql.NewSortedMergeIterator(inputs, opt) } else { itr = influxql.NewMergeIterator(inputs, opt) } itrs = append(itrs, newLimitIterator(itr, opt)) } else { itrs = append(itrs, inputs...) } } } return nil }(); err != nil { influxql.Iterators(itrs).Close() return nil, err } return itrs, nil }
// ReadAll reads all points from all iterators. func (itrs Iterators) ReadAll() ([][]influxql.Point, error) { var a [][]influxql.Point // Read from every iterator until a nil is encountered. for { points, err := itrs.Next() if err != nil { return nil, err } else if points == nil { break } a = append(a, influxql.Points(points).Clone()) } // Close all iterators. influxql.Iterators(itrs).Close() return a, nil }
// CreateIterator returns a single combined iterator for the shards. func (a Shards) CreateIterator(opt influxql.IteratorOptions) (influxql.Iterator, error) { if influxql.Sources(opt.Sources).HasSystemSource() { return a.createSystemIterator(opt) } // Create iterators for each shard. // Ensure that they are closed if an error occurs. itrs := make([]influxql.Iterator, 0, len(a)) if err := func() error { for _, sh := range a { itr, err := sh.CreateIterator(opt) if err != nil { return err } itrs = append(itrs, itr) } return nil }(); err != nil { influxql.Iterators(itrs).Close() return nil, err } // Merge into a single iterator. if opt.MergeSorted() { return influxql.NewSortedMergeIterator(itrs, opt), nil } itr := influxql.NewMergeIterator(itrs, opt) if opt.Expr != nil { if expr, ok := opt.Expr.(*influxql.Call); ok && expr.Name == "count" { opt.Expr = &influxql.Call{ Name: "sum", Args: expr.Args, } } } return influxql.NewCallIterator(itr, opt), nil }
// createTagSetIterators creates a set of iterators for a tagset. func (e *Engine) createTagSetIterators(ref *influxql.VarRef, mm *tsdb.Measurement, t *influxql.TagSet, opt influxql.IteratorOptions) ([]influxql.Iterator, error) { // Set parallelism by number of logical cpus. parallelism := runtime.GOMAXPROCS(0) if parallelism > len(t.SeriesKeys) { parallelism = len(t.SeriesKeys) } // Create series key groupings w/ return error. groups := make([]struct { keys []string filters []influxql.Expr itrs []influxql.Iterator err error }, parallelism) // Group series keys. n := len(t.SeriesKeys) / parallelism for i := 0; i < parallelism; i++ { group := &groups[i] if i < parallelism-1 { group.keys = t.SeriesKeys[i*n : (i+1)*n] group.filters = t.Filters[i*n : (i+1)*n] } else { group.keys = t.SeriesKeys[i*n:] group.filters = t.Filters[i*n:] } group.itrs = make([]influxql.Iterator, 0, len(group.keys)) } // Read series groups in parallel. var wg sync.WaitGroup for i := range groups { wg.Add(1) go func(i int) { defer wg.Done() groups[i].itrs, groups[i].err = e.createTagSetGroupIterators(ref, mm, groups[i].keys, t, groups[i].filters, opt) }(i) } wg.Wait() // Determine total number of iterators so we can allocate only once. var itrN int for _, group := range groups { itrN += len(group.itrs) } // Combine all iterators together and check for errors. var err error itrs := make([]influxql.Iterator, 0, itrN) for _, group := range groups { if group.err != nil { err = group.err } itrs = append(itrs, group.itrs...) } // If an error occurred, make sure we close all created iterators. if err != nil { influxql.Iterators(itrs).Close() return nil, err } return itrs, nil }
func (e *StatementExecutor) executeSelectStatement(stmt *influxql.SelectStatement, ctx *influxql.ExecutionContext) error { // Handle SHOW TAG VALUES separately so it can be optimized. // https://github.com/influxdata/influxdb/issues/6233 if source, ok := stmt.Sources[0].(*influxql.Measurement); ok && source.Name == "_tags" { // Use the optimized version only if we have direct access to the database. if store, ok := e.TSDBStore.(LocalTSDBStore); ok { return e.executeShowTagValues(stmt, ctx, store) } } // It is important to "stamp" this time so that everywhere we evaluate `now()` in the statement is EXACTLY the same `now` now := time.Now().UTC() opt := influxql.SelectOptions{InterruptCh: ctx.InterruptCh} // Replace instances of "now()" with the current time, and check the resultant times. nowValuer := influxql.NowValuer{Now: now} stmt.Condition = influxql.Reduce(stmt.Condition, &nowValuer) // Replace instances of "now()" with the current time in the dimensions. for _, d := range stmt.Dimensions { d.Expr = influxql.Reduce(d.Expr, &nowValuer) } var err error opt.MinTime, opt.MaxTime, err = influxql.TimeRange(stmt.Condition) if err != nil { return err } if opt.MaxTime.IsZero() { // In the case that we're executing a meta query where the user cannot // specify a time condition, then we expand the default max time // to the maximum possible value, to ensure that data where all points // are in the future are returned. if influxql.Sources(stmt.Sources).HasSystemSource() { opt.MaxTime = time.Unix(0, influxql.MaxTime).UTC() } else { opt.MaxTime = now } } if opt.MinTime.IsZero() { opt.MinTime = time.Unix(0, 0) } // Convert DISTINCT into a call. stmt.RewriteDistinct() // Remove "time" from fields list. stmt.RewriteTimeFields() // Create an iterator creator based on the shards in the cluster. ic, err := e.iteratorCreator(stmt, &opt) if err != nil { return err } // Expand regex sources to their actual source names. if stmt.Sources.HasRegex() { sources, err := ic.ExpandSources(stmt.Sources) if err != nil { return err } stmt.Sources = sources } // Rewrite wildcards, if any exist. tmp, err := stmt.RewriteFields(ic) if err != nil { return err } stmt = tmp if e.MaxSelectBucketsN > 0 && !stmt.IsRawQuery { interval, err := stmt.GroupByInterval() if err != nil { return err } if interval > 0 { // Determine the start and end time matched to the interval (may not match the actual times). min := opt.MinTime.Truncate(interval) max := opt.MaxTime.Truncate(interval).Add(interval) // Determine the number of buckets by finding the time span and dividing by the interval. buckets := int64(max.Sub(min)) / int64(interval) if int(buckets) > e.MaxSelectBucketsN { return fmt.Errorf("max select bucket count exceeded: %d buckets", buckets) } } } // Create a set of iterators from a selection. itrs, err := influxql.Select(stmt, ic, &opt) if err != nil { return err } if e.MaxSelectPointN > 0 { monitor := influxql.PointLimitMonitor(itrs, influxql.DefaultStatsInterval, e.MaxSelectPointN) ctx.Query.Monitor(monitor) } // Generate a row emitter from the iterator set. em := influxql.NewEmitter(itrs, stmt.TimeAscending(), ctx.ChunkSize) em.Columns = stmt.ColumnNames() em.OmitTime = stmt.OmitTime defer em.Close() // Calculate initial stats across all iterators. stats := influxql.Iterators(itrs).Stats() if e.MaxSelectSeriesN > 0 && stats.SeriesN > e.MaxSelectSeriesN { return fmt.Errorf("max select series count exceeded: %d series", stats.SeriesN) } // Emit rows to the results channel. var writeN int64 var emitted bool var pointsWriter *BufferedPointsWriter if stmt.Target != nil { pointsWriter = NewBufferedPointsWriter(e.PointsWriter, stmt.Target.Measurement.Database, stmt.Target.Measurement.RetentionPolicy, 10000) } for { row, err := em.Emit() if err != nil { return err } else if row == nil { // Check if the query was interrupted while emitting. select { case <-ctx.InterruptCh: return influxql.ErrQueryInterrupted default: } break } // Write points back into system for INTO statements. if stmt.Target != nil { if err := e.writeInto(pointsWriter, stmt, row); err != nil { return err } writeN += int64(len(row.Values)) continue } result := &influxql.Result{ StatementID: ctx.StatementID, Series: []*models.Row{row}, } // Send results or exit if closing. select { case <-ctx.InterruptCh: return influxql.ErrQueryInterrupted case ctx.Results <- result: } emitted = true } // Flush remaing points and emit write count if an INTO statement. if stmt.Target != nil { if err := pointsWriter.Flush(); err != nil { return err } var messages []*influxql.Message if ctx.ReadOnly { messages = append(messages, influxql.ReadOnlyWarning(stmt.String())) } ctx.Results <- &influxql.Result{ StatementID: ctx.StatementID, Messages: messages, Series: []*models.Row{{ Name: "result", Columns: []string{"time", "written"}, Values: [][]interface{}{{time.Unix(0, 0).UTC(), writeN}}, }}, } return nil } // Always emit at least one result. if !emitted { ctx.Results <- &influxql.Result{ StatementID: ctx.StatementID, Series: make([]*models.Row, 0), } } return nil }
func (e *StatementExecutor) executeSelectStatement(stmt *influxql.SelectStatement, ctx *influxql.ExecutionContext) error { // It is important to "stamp" this time so that everywhere we evaluate `now()` in the statement is EXACTLY the same `now` now := time.Now().UTC() opt := influxql.SelectOptions{InterruptCh: ctx.InterruptCh} // Replace instances of "now()" with the current time, and check the resultant times. stmt.Condition = influxql.Reduce(stmt.Condition, &influxql.NowValuer{Now: now}) var err error opt.MinTime, opt.MaxTime, err = influxql.TimeRange(stmt.Condition) if err != nil { return err } if opt.MaxTime.IsZero() { opt.MaxTime = now } if opt.MinTime.IsZero() { opt.MinTime = time.Unix(0, 0) } // Convert DISTINCT into a call. stmt.RewriteDistinct() // Remove "time" from fields list. stmt.RewriteTimeFields() // Create an iterator creator based on the shards in the cluster. ic, err := e.iteratorCreator(stmt, &opt) if err != nil { return err } // Expand regex sources to their actual source names. if stmt.Sources.HasRegex() { sources, err := ic.ExpandSources(stmt.Sources) if err != nil { return err } stmt.Sources = sources } // Rewrite wildcards, if any exist. tmp, err := stmt.RewriteWildcards(ic) if err != nil { return err } stmt = tmp if e.MaxSelectBucketsN > 0 && !stmt.IsRawQuery { interval, err := stmt.GroupByInterval() if err != nil { return err } if interval > 0 { // Determine the start and end time matched to the interval (may not match the actual times). min := opt.MinTime.Truncate(interval) max := opt.MaxTime.Truncate(interval).Add(interval) // Determine the number of buckets by finding the time span and dividing by the interval. buckets := int64(max.Sub(min)) / int64(interval) if int(buckets) > e.MaxSelectBucketsN { return fmt.Errorf("max select bucket count exceeded: %d buckets", buckets) } } } // Create a set of iterators from a selection. itrs, err := influxql.Select(stmt, ic, &opt) if err != nil { return err } if e.MaxSelectPointN > 0 { monitor := influxql.PointLimitMonitor(itrs, influxql.DefaultStatsInterval, e.MaxSelectPointN) ctx.Query.Monitor(monitor) } // Generate a row emitter from the iterator set. em := influxql.NewEmitter(itrs, stmt.TimeAscending(), ctx.ChunkSize) em.Columns = stmt.ColumnNames() em.OmitTime = stmt.OmitTime defer em.Close() // Calculate initial stats across all iterators. stats := influxql.Iterators(itrs).Stats() if e.MaxSelectSeriesN > 0 && stats.SeriesN > e.MaxSelectSeriesN { return fmt.Errorf("max select series count exceeded: %d series", stats.SeriesN) } // Emit rows to the results channel. var writeN int64 var emitted bool for { row := em.Emit() if row == nil { // Check if the query was interrupted while emitting. select { case <-ctx.InterruptCh: return influxql.ErrQueryInterrupted default: } break } result := &influxql.Result{ StatementID: ctx.StatementID, Series: []*models.Row{row}, } // Write points back into system for INTO statements. if stmt.Target != nil { if err := e.writeInto(stmt, row); err != nil { return err } writeN += int64(len(row.Values)) continue } // Send results or exit if closing. select { case <-ctx.InterruptCh: return influxql.ErrQueryInterrupted case ctx.Results <- result: } emitted = true } // Emit write count if an INTO statement. if stmt.Target != nil { ctx.Results <- &influxql.Result{ StatementID: ctx.StatementID, Series: []*models.Row{{ Name: "result", Columns: []string{"time", "written"}, Values: [][]interface{}{{time.Unix(0, 0).UTC(), writeN}}, }}, } return nil } // Always emit at least one result. if !emitted { ctx.Results <- &influxql.Result{ StatementID: ctx.StatementID, Series: make([]*models.Row, 0), } } return nil }
func (e *StatementExecutor) executeSelectStatement(stmt *influxql.SelectStatement, ctx *influxql.ExecutionContext) error { // Handle SHOW TAG VALUES separately so it can be optimized. // https://github.com/influxdata/influxdb/issues/6233 if source, ok := stmt.Sources[0].(*influxql.Measurement); ok && source.Name == "_tags" { // Use the optimized version only if we have direct access to the database. if store, ok := e.TSDBStore.(LocalTSDBStore); ok { return e.executeShowTagValues(stmt, ctx, store) } } itrs, stmt, err := e.createIterators(stmt, ctx) if err != nil { return err } // Generate a row emitter from the iterator set. em := influxql.NewEmitter(itrs, stmt.TimeAscending(), ctx.ChunkSize) em.Columns = stmt.ColumnNames() em.OmitTime = stmt.OmitTime defer em.Close() // Calculate initial stats across all iterators. stats := influxql.Iterators(itrs).Stats() if e.MaxSelectSeriesN > 0 && stats.SeriesN > e.MaxSelectSeriesN { return fmt.Errorf("max select series count exceeded: %d series", stats.SeriesN) } // Emit rows to the results channel. var writeN int64 var emitted bool var pointsWriter *BufferedPointsWriter if stmt.Target != nil { pointsWriter = NewBufferedPointsWriter(e.PointsWriter, stmt.Target.Measurement.Database, stmt.Target.Measurement.RetentionPolicy, 10000) } for { row, err := em.Emit() if err != nil { return err } else if row == nil { // Check if the query was interrupted while emitting. select { case <-ctx.InterruptCh: return influxql.ErrQueryInterrupted default: } break } // Write points back into system for INTO statements. if stmt.Target != nil { if err := e.writeInto(pointsWriter, stmt, row); err != nil { return err } writeN += int64(len(row.Values)) continue } result := &influxql.Result{ StatementID: ctx.StatementID, Series: []*models.Row{row}, } // Send results or exit if closing. select { case <-ctx.InterruptCh: return influxql.ErrQueryInterrupted case ctx.Results <- result: } emitted = true } // Flush remaing points and emit write count if an INTO statement. if stmt.Target != nil { if err := pointsWriter.Flush(); err != nil { return err } var messages []*influxql.Message if ctx.ReadOnly { messages = append(messages, influxql.ReadOnlyWarning(stmt.String())) } ctx.Results <- &influxql.Result{ StatementID: ctx.StatementID, Messages: messages, Series: []*models.Row{{ Name: "result", Columns: []string{"time", "written"}, Values: [][]interface{}{{time.Unix(0, 0).UTC(), writeN}}, }}, } return nil } // Always emit at least one result. if !emitted { ctx.Results <- &influxql.Result{ StatementID: ctx.StatementID, Series: make([]*models.Row, 0), } } return nil }
func (e *QueryExecutor) executeSelectStatement(stmt *influxql.SelectStatement, chunkSize, statementID int, results chan *influxql.Result, closing <-chan struct{}) error { // It is important to "stamp" this time so that everywhere we evaluate `now()` in the statement is EXACTLY the same `now` now := time.Now().UTC() opt := influxql.SelectOptions{InterruptCh: closing} // Replace instances of "now()" with the current time, and check the resultant times. stmt.Condition = influxql.Reduce(stmt.Condition, &influxql.NowValuer{Now: now}) opt.MinTime, opt.MaxTime = influxql.TimeRange(stmt.Condition) if opt.MaxTime.IsZero() { opt.MaxTime = now } if opt.MinTime.IsZero() { opt.MinTime = time.Unix(0, 0) } // Convert DISTINCT into a call. stmt.RewriteDistinct() // Remove "time" from fields list. stmt.RewriteTimeFields() // Create an iterator creator based on the shards in the cluster. ic, err := e.iteratorCreator(stmt, &opt) if err != nil { return err } // Expand regex sources to their actual source names. if stmt.Sources.HasRegex() { sources, err := ic.ExpandSources(stmt.Sources) if err != nil { return err } stmt.Sources = sources } // Rewrite wildcards, if any exist. tmp, err := stmt.RewriteWildcards(ic) if err != nil { return err } stmt = tmp // Create a set of iterators from a selection. itrs, err := influxql.Select(stmt, ic, &opt) if err != nil { return err } // Generate a row emitter from the iterator set. em := influxql.NewEmitter(itrs, stmt.TimeAscending()) em.Columns = stmt.ColumnNames() em.OmitTime = stmt.OmitTime defer em.Close() // Calculate initial stats across all iterators. stats := influxql.Iterators(itrs).Stats() if e.MaxSelectSeriesN > 0 && stats.SeriesN > e.MaxSelectSeriesN { return fmt.Errorf("max select series count exceeded: %d series", stats.SeriesN) } // Emit rows to the results channel. var writeN int64 var emitted bool for { row := em.Emit() if row == nil { // Check if the query was interrupted while emitting. select { case <-closing: return influxql.ErrQueryInterrupted default: } break } result := &influxql.Result{ StatementID: statementID, Series: []*models.Row{row}, } // Write points back into system for INTO statements. if stmt.Target != nil { if err := e.writeInto(stmt, row); err != nil { return err } writeN += int64(len(row.Values)) continue } // Send results or exit if closing. select { case <-closing: return influxql.ErrQueryInterrupted case results <- result: } emitted = true } // Emit write count if an INTO statement. if stmt.Target != nil { results <- &influxql.Result{ StatementID: statementID, Series: []*models.Row{{ Name: "result", Columns: []string{"time", "written"}, Values: [][]interface{}{{time.Unix(0, 0).UTC(), writeN}}, }}, } return nil } // Always emit at least one result. if !emitted { results <- &influxql.Result{ StatementID: statementID, Series: make([]*models.Row, 0), } } return nil }