// Generate a new stealth address func new_stealth_address(prv_key []byte) { sk, er := hex.DecodeString(*scankey) if er != nil { println(er.Error()) os.Exit(1) } if len(sk) != 33 || sk[0] != 2 && sk[0] != 3 { println("scankey must be a compressed public key (33 bytes long)") os.Exit(1) } if *prefix > 16 { if *prefix > 24 { fmt.Println("The stealth prefix cannot be bigger than 32", *prefix) os.Exit(1) } fmt.Println("WARNING: You chose a prifix length of", *prefix) fmt.Println("WARNING: Big prefixes endanger your anonymity.") } pub := btc.PublicFromPrivate(prv_key, true) if pub == nil { println("PublicFromPrivate error 2") os.Exit(1) } sa := new(btc.StealthAddr) sa.Version = btc.StealthAddressVersion(*testnet) sa.Options = 0 copy(sa.ScanKey[:], sk) sa.SpendKeys = make([][33]byte, 1) copy(sa.SpendKeys[0][:], pub) sa.Sigs = 1 sa.Prefix = make([]byte, 1+(byte(*prefix)+7)>>3) if *prefix > 0 { sa.Prefix[0] = byte(*prefix) rand.Read(sa.Prefix[1:]) } fmt.Println(sa.String()) }
func newAddressInfoFromWord(word string) *AddressInfo { sha256Hash := sha256.New() _, err := sha256Hash.Write([]byte(word)) if err != nil { panic(err) } privateKey := sha256Hash.Sum(nil) publicKey, err := btc.PublicFromPrivate(privateKey, false) if err != nil { panic(err) } address := btc.NewAddrFromPubkey(publicKey, btc.ADDRVER_BTC).String() resp, err := http.Get("http://blockchain.info/address/" + address + "?format=json") if err != nil { panic(err) } defer resp.Body.Close() body, err := ioutil.ReadAll(resp.Body) if err != nil { panic(err) } var addressInfo AddressInfo err = json.Unmarshal(body, &addressInfo) if err != nil { panic(err) } addressInfo.Word = word addressInfo.Key = hex.EncodeToString(privateKey) return &addressInfo }
func do_scan_stealth(p string, ignore_prefix bool) { sa, _ := btc.NewStealthAddrFromString(p) if sa == nil { fmt.Println("Specify base58 encoded stealth address") return } if sa.Version != btc.StealthAddressVersion(common.CFG.Testnet) { fmt.Println("Incorrect version of the stealth address") return } if len(sa.SpendKeys) != 1 { fmt.Println("Currently only single spend keys are supported. This address has", len(sa.SpendKeys)) return } //fmt.Println("scankey", hex.EncodeToString(sa.ScanKey[:])) if ignore_prefix { sa.Prefix = []byte{0} fmt.Println("Ignoring Prefix inside the address") } else if len(sa.Prefix) == 0 { fmt.Println("Prefix not present in the address") } else { fmt.Println("Prefix", sa.Prefix[0], hex.EncodeToString(sa.Prefix[1:])) } ds := wallet.FetchStealthKeys() if len(ds) == 0 { return } defer func() { for i := range ds { utils.ClearBuffer(ds[i]) } }() // clear the keys in mem after all var d []byte for i := range ds { if bytes.Equal(btc.PublicFromPrivate(ds[i], true), sa.ScanKey[:]) { d = ds[i] } } if d == nil { fmt.Println("No matching secret found your wallet/stealth folder") return } var pos []*btc.TxPrevOut cs := make(map[uint64][]byte) as := make(map[uint64]*btc.BtcAddr) var ncnt uint common.BlockChain.Unspent.ScanStealth(sa, func(eth, txid []byte, vout uint32, scr []byte) bool { if len(scr) == 25 && scr[0] == 0x76 && scr[1] == 0xa9 && scr[2] == 0x14 && scr[23] == 0x88 && scr[24] == 0xac { var h160 [20]byte //yes := btc.NewUint256(txid).String()=="9cc90ff2528b49dfd9c53e5e90c98a1fd45d577af7f3a9e7a9f8a86b52fb0280" c := btc.StealthDH(eth, d) spen_exp := btc.DeriveNextPublic(sa.SpendKeys[0][:], c) btc.RimpHash(spen_exp, h160[:]) if bytes.Equal(scr[3:23], h160[:]) { po := new(btc.TxPrevOut) copy(po.Hash[:], txid) po.Vout = vout pos = append(pos, po) cs[po.UIdx()] = c as[po.UIdx()] = btc.NewAddrFromHash160(h160[:], btc.AddrVerPubkey(common.CFG.Testnet)) } ncnt++ /*fmt.Printf("%s with c=%s", btc.NewAddrFromHash160(h160[:], btc.AddrVerPubkey(common.CFG.Testnet)).String(), hex.EncodeToString(c)) fmt.Println()*/ return true } else { return false } }) fmt.Println(len(pos), "outputs, out of", ncnt, "notifications belonged to our wallet") var unsp btc.AllUnspentTx for i := range pos { po, e := common.BlockChain.Unspent.UnspentGet(pos[i]) if e != nil { println("UnspentGet:", e.Error()) println("This should not happen - please, report a bug.") println("You can probably fix it by launching the client with -rescan") os.Exit(1) } //fmt.Println(btc.NewUint256(pos[i].Hash[:]), pos[i].Vout+1, hex.EncodeToString(cs[pos[i].UIdx()])) one := &btc.OneUnspentTx{ TxPrevOut: *pos[i], Value: po.Value, MinedAt: po.BlockHeight, BtcAddr: as[pos[i].UIdx()], StealthC: cs[pos[i].UIdx()]} unsp = append(unsp, one) } sort.Sort(unsp) os.RemoveAll("balance") os.MkdirAll("balance/", 0770) utxt, _ := os.Create("balance/unspent.txt") fmt.Print(wallet.DumpBalance(unsp, utxt, true, false)) }
func load_others() { f, e := os.Open(RawKeysFilename) if e == nil { defer f.Close() td := bufio.NewReader(f) for { li, _, _ := td.ReadLine() if li == nil { break } pk := strings.SplitN(strings.Trim(string(li), " "), " ", 2) if pk[0][0] == '#' { continue // Just a comment-line } pkb := btc.Decodeb58(pk[0]) if pkb == nil { println("Decodeb58 failed:", pk[0][:6]) continue } if len(pkb) != 37 && len(pkb) != 38 { println(pk[0][:6], "has wrong key", len(pkb)) println(hex.EncodeToString(pkb)) continue } if pkb[0] != privver { println(pk[0][:6], "has version", pkb[0], "while we expect", privver) if pkb[0] == 0xef { fmt.Println("You probably meant testnet, so use -t switch") os.Exit(0) } else { continue } } var sh [32]byte var compr bool if len(pkb) == 37 { // compressed key sh = btc.Sha2Sum(pkb[0:33]) if !bytes.Equal(sh[:4], pkb[33:37]) { println(pk[0][:6], "checksum error") continue } compr = false } else { if pkb[33] != 1 { println(pk[0][:6], "a key of length 38 bytes must be compressed") continue } sh = btc.Sha2Sum(pkb[0:34]) if !bytes.Equal(sh[:4], pkb[34:38]) { println(pk[0][:6], "checksum error") continue } compr = true } key := pkb[1:33] pub, er := btc.PublicFromPrivate(key, compr) if er != nil { println("PublicFromPrivate:", e.Error()) os.Exit(1) } priv_keys = append(priv_keys, key) publ_addrs = append(publ_addrs, btc.NewAddrFromPubkey(pub, verbyte)) if len(pk) > 1 { labels = append(labels, pk[1]) } else { labels = append(labels, fmt.Sprint("Other ", len(priv_keys))) } } if *verbose { fmt.Println(len(priv_keys), "keys imported from", RawKeysFilename) } } else { if *verbose { fmt.Println("You can also have some dumped (b58 encoded) priv keys in file", RawKeysFilename) } } }
// Get the secret seed and generate "*keycnt" key pairs (both private and public) func make_wallet() { var lab string if *testnet { verbyte = 0x6f privver = 0xef } else { // verbyte is be zero by definition privver = 0x80 } load_others() pass := getpass() seed_key := make([]byte, 32) btc.ShaHash([]byte(pass), seed_key) if *waltype == 3 { lab = "TypC" } else if *waltype == 2 { if *type2sec != "" { d, e := hex.DecodeString(*type2sec) if e != nil { println("t2sec error:", e.Error()) os.Exit(1) } type2_secret = new(big.Int).SetBytes(d) } else { var buf [32]byte btc.ShaHash([]byte(pass+pass), buf[:]) type2_secret = new(big.Int).SetBytes(buf[:]) } lab = "TypB" } else { lab = "TypA" } if pass != "" { if *verbose { fmt.Println("Generating", *keycnt, "keys, version", verbyte, "...") } for i := uint(0); i < *keycnt; { prv_key := make([]byte, 32) if *waltype == 3 { btc.ShaHash(seed_key, prv_key) seed_key = append(seed_key, byte(i)) } else if *waltype == 2 { seed_key = btc.DeriveNextPrivate(new(big.Int).SetBytes(seed_key), type2_secret).Bytes() copy(prv_key, seed_key) } else { btc.ShaHash(seed_key, prv_key) copy(seed_key, prv_key) } priv_keys = append(priv_keys, prv_key) pub, er := btc.PublicFromPrivate(prv_key, !*uncompressed) if er == nil { publ_addrs = append(publ_addrs, btc.NewAddrFromPubkey(pub, verbyte)) labels = append(labels, fmt.Sprint(lab, " ", i+1)) i++ } else { println("PublicFromPrivate:", er.Error()) } } if *verbose { fmt.Println("Private keys re-generated") } } }
// load the content of the "balance/" folder func load_balance(showbalance bool) { var unknownInputs, multisigInputs int f, e := os.Open("balance/unspent.txt") if e != nil { println(e.Error()) return } rd := bufio.NewReader(f) for { l, _, e := rd.ReadLine() if len(l) == 0 && e != nil { break } if l[64] == '-' { txid := btc.NewUint256FromString(string(l[:64])) rst := strings.SplitN(string(l[65:]), " ", 2) vout, _ := strconv.ParseUint(rst[0], 10, 32) uns := new(btc.TxPrevOut) copy(uns.Hash[:], txid.Hash[:]) uns.Vout = uint32(vout) lab := "" if len(rst) > 1 { lab = rst[1] } str := string(l) if sti := strings.Index(str, "_StealthC:"); sti != -1 { c, e := hex.DecodeString(str[sti+10 : sti+10+64]) if e != nil { fmt.Println("ERROR at stealth", txid.String(), vout, e.Error()) } else { // add a new key to the wallet sec := btc.DeriveNextPrivate(first_seed[:], c) is_stealth[len(priv_keys)] = true priv_keys = append(priv_keys, sec) labels = append(labels, lab) pub_key := btc.PublicFromPrivate(sec, true) publ_addrs = append(publ_addrs, btc.NewAddrFromPubkey(pub_key, btc.AddrVerPubkey(*testnet))) compressed_key = append(compressed_key, true) // stealth keys are always compressed } } if _, ok := loadedTxs[txid.Hash]; !ok { tf, _ := os.Open("balance/" + txid.String() + ".tx") if tf != nil { siz, _ := tf.Seek(0, os.SEEK_END) tf.Seek(0, os.SEEK_SET) buf := make([]byte, siz) tf.Read(buf) tf.Close() th := btc.Sha2Sum(buf) if bytes.Equal(th[:], txid.Hash[:]) { tx, _ := btc.NewTx(buf) if tx != nil { loadedTxs[txid.Hash] = tx } else { println("transaction is corrupt:", txid.String()) } } else { println("transaction file is corrupt:", txid.String()) os.Exit(1) } } else { println("transaction file not found:", txid.String()) os.Exit(1) } } // Sum up all the balance and check if we have private key for this input uo := UO(uns) add_it := true if !btc.IsP2SH(uo.Pk_script) { fnd := false for j := range publ_addrs { if publ_addrs[j].Owns(uo.Pk_script) { fnd = true break } } if !fnd { if *onlvalid { add_it = false } if showbalance { unknownInputs++ if *verbose { ss := uns.String() ss = ss[:8] + "..." + ss[len(ss)-12:] fmt.Println(ss, "does not belong to your wallet (cannot sign it)") } } } } else { if *onlvalid { add_it = false } if *verbose { ss := uns.String() ss = ss[:8] + "..." + ss[len(ss)-12:] fmt.Println(ss, "belongs to a multisig address") } multisigInputs++ } if add_it { unspentOuts = append(unspentOuts, uns) unspentOutsLabel = append(unspentOutsLabel, lab) totBtc += UO(uns).Value } } } f.Close() fmt.Printf("You have %.8f BTC in %d unspent outputs. %d inputs are multisig type\n", float64(totBtc)/1e8, len(unspentOuts), multisigInputs) if showbalance { if unknownInputs > 0 { fmt.Printf("WARNING: Some inputs (%d) cannot be spent with this password (-v to print them)\n", unknownInputs) } } }
// Get the secret seed and generate "*keycnt" key pairs (both private and public) func make_wallet() { var lab string if *testnet { verbyte = 0x6f privver = 0xef } else { // verbyte is be zero by definition privver = 0x80 } load_others() seed_key := make([]byte, 32) if !getseed(seed_key) { os.Exit(0) } defer func() { utils.ClearBuffer(seed_key) }() if *waltype == 3 { lab = "TypC" } else if *waltype == 2 { if *type2sec != "" { d, e := hex.DecodeString(*type2sec) if e != nil { println("t2sec error:", e.Error()) os.Exit(1) } type2_secret = d } else { type2_secret = make([]byte, 20) btc.RimpHash(seed_key, type2_secret) } lab = "TypB" } else { lab = "TypA" } if *verbose { fmt.Println("Generating", *keycnt, "keys, version", verbyte, "...") } for i := uint(0); i < *keycnt; { prv_key := make([]byte, 32) if *waltype == 3 { btc.ShaHash(seed_key, prv_key) seed_key = append(seed_key, byte(i)) } else if *waltype == 2 { seed_key = btc.DeriveNextPrivate(seed_key, type2_secret) copy(prv_key, seed_key) } else { btc.ShaHash(seed_key, prv_key) copy(seed_key, prv_key) } priv_keys = append(priv_keys, prv_key) if *scankey != "" { new_stealth_address(prv_key) return } // for stealth keys if i == 0 { copy(first_seed[:], prv_key) } compressed_key = append(compressed_key, !*uncompressed) pub := btc.PublicFromPrivate(prv_key, !*uncompressed) if pub != nil { adr := btc.NewAddrFromPubkey(pub, verbyte) if *pubkey != "" && *pubkey == adr.String() { fmt.Println(adr.String(), "=>", hex.EncodeToString(pub)) return } publ_addrs = append(publ_addrs, adr) labels = append(labels, fmt.Sprint(lab, " ", i+1)) i++ } else { println("PublicFromPrivate error 3") } } if *verbose { fmt.Println("Private keys re-generated") } }
// Thanks @dabura667 - https://bitcointalk.org/index.php?topic=590349.msg6560332#msg6560332 func stealth_txout(sa *btc.StealthAddr, value uint64) (res []*btc.TxOut) { if sa.Version != btc.StealthAddressVersion(*testnet) { fmt.Println("ERROR: Unsupported version of a stealth address", sa.Version) os.Exit(1) } if len(sa.SpendKeys) != 1 { fmt.Println("ERROR: Currently only non-multisig stealth addresses are supported", len(sa.SpendKeys)) os.Exit(1) } // Make two outpus res = make([]*btc.TxOut, 2) var e, ephemkey, pkscr []byte var nonce, nonce_from uint32 var look4pref bool sha := sha256.New() // 6. create a new pub/priv keypair (lets call its pubkey "ephemkey" and privkey "e") pick_different_e: e = make([]byte, 32) rand.Read(e) defer utils.ClearBuffer(e) ephemkey = btc.PublicFromPrivate(e, true) if *verbose { fmt.Println("e", hex.EncodeToString(e)) fmt.Println("ephemkey", hex.EncodeToString(ephemkey)) } // 7. IF there is a prefix in the stealth address, brute force a nonce such // that SHA256(nonce.concate(ephemkey)) first 4 bytes are equal to the prefix. // IF NOT, then just run through the loop once and pickup a random nonce. // (probably make the while condition include "or prefix = null" or something to that nature. look4pref = len(sa.Prefix) > 0 && sa.Prefix[0] > 0 if look4pref { fmt.Print("Prefix is ", sa.Prefix[0], ":", hex.EncodeToString(sa.Prefix[1:]), " - looking for nonce...") } binary.Read(rand.Reader, binary.LittleEndian, &nonce_from) nonce = nonce_from for { binary.Write(sha, binary.LittleEndian, nonce) sha.Write(ephemkey) if sa.CheckPrefix(sha.Sum(nil)[:4]) { break } sha.Reset() nonce++ if nonce == nonce_from { fmt.Println("EOF") goto pick_different_e } if (nonce & 0xfffff) == 0 { fmt.Print(".") } } if look4pref { fmt.Println(uint32(nonce - nonce_from)) } // 8. Once you have the nonce and the ephemkey, you can create the first output, which is pkscr = make([]byte, 40) pkscr[0] = 0x6a // OP_RETURN pkscr[1] = 38 // length pkscr[2] = 0x06 // always 6 binary.LittleEndian.PutUint32(pkscr[3:7], nonce) copy(pkscr[7:40], ephemkey) res[0] = &btc.TxOut{Pk_script: pkscr} // 9. Now use ECC multiplication to calculate e*Q where Q = scan_pubkey // an e = privkey to ephemkey and then hash it. c := btc.StealthDH(sa.ScanKey[:], e) if *verbose { fmt.Println("c", hex.EncodeToString(c)) } // 10. That hash is now "c". use ECC multiplication and addition to // calculate D + (c*G) where D = spend_pubkey, and G is the reference // point for secp256k1. This will give you a new pubkey. (we'll call it D') Dpr := btc.DeriveNextPublic(sa.SpendKeys[0][:], c) if *verbose { fmt.Println("Dpr", hex.EncodeToString(Dpr)) } // 11. Create a normal P2KH output spending to D' as public key. adr := btc.NewAddrFromPubkey(Dpr, btc.AddrVerPubkey(*testnet)) res[1] = &btc.TxOut{Value: value, Pk_script: adr.OutScript()} fmt.Println("Sending to stealth", adr.String()) return }