示例#1
0
文件: random.go 项目: 24hours/golearn
// GenerateSplitAttribute returns the best attribute out of those randomly chosen
// which maximises Information Gain
func (r *RandomTreeRuleGenerator) GenerateSplitAttribute(f *base.Instances) base.Attribute {

	// First step is to generate the random attributes that we'll consider
	maximumAttribute := f.GetAttributeCount()
	consideredAttributes := make([]int, r.Attributes)
	attrCounter := 0
	for {
		if len(consideredAttributes) >= r.Attributes {
			break
		}
		selectedAttribute := rand.Intn(maximumAttribute)
		fmt.Println(selectedAttribute, attrCounter, consideredAttributes, len(consideredAttributes))
		if selectedAttribute != f.ClassIndex {
			matched := false
			for _, a := range consideredAttributes {
				if a == selectedAttribute {
					matched = true
					break
				}
			}
			if matched {
				continue
			}
			consideredAttributes = append(consideredAttributes, selectedAttribute)
			attrCounter++
		}
	}

	return r.internalRule.GetSplitAttributeFromSelection(consideredAttributes, f)
}
示例#2
0
func (lr *LinearRegression) Fit(inst *base.Instances) error {
	if inst.Rows < inst.GetAttributeCount() {
		return NotEnoughDataError
	}

	// Split into two matrices, observed results (dependent variable y)
	// and the explanatory variables (X) - see http://en.wikipedia.org/wiki/Linear_regression
	observed := mat64.NewDense(inst.Rows, 1, nil)
	explVariables := mat64.NewDense(inst.Rows, inst.GetAttributeCount(), nil)

	for i := 0; i < inst.Rows; i++ {
		observed.Set(i, 0, inst.Get(i, inst.ClassIndex)) // Set observed data

		for j := 0; j < inst.GetAttributeCount(); j++ {
			if j == 0 {
				// Set intercepts to 1.0
				// Could / should be done better: http://www.theanalysisfactor.com/interpret-the-intercept/
				explVariables.Set(i, 0, 1.0)
			} else {
				explVariables.Set(i, j, inst.Get(i, j-1))
			}
		}
	}

	n := inst.GetAttributeCount()
	qr := mat64.QR(explVariables)
	q := qr.Q()
	reg := qr.R()

	var transposed, qty mat64.Dense
	transposed.TCopy(q)
	qty.Mul(&transposed, observed)

	regressionCoefficients := make([]float64, n)
	for i := n - 1; i >= 0; i-- {
		regressionCoefficients[i] = qty.At(i, 0)
		for j := i + 1; j < n; j++ {
			regressionCoefficients[i] -= regressionCoefficients[j] * reg.At(i, j)
		}
		regressionCoefficients[i] /= reg.At(i, i)
	}

	lr.disturbance = regressionCoefficients[0]
	lr.regressionCoefficients = regressionCoefficients[1:]
	lr.fitted = true

	return nil
}
示例#3
0
文件: id3.go 项目: 24hours/golearn
// InferID3Tree builds a decision tree using a RuleGenerator
// from a set of Instances (implements the ID3 algorithm)
func InferID3Tree(from *base.Instances, with RuleGenerator) *DecisionTreeNode {
	// Count the number of classes at this node
	classes := from.CountClassValues()
	// If there's only one class, return a DecisionTreeLeaf with
	// the only class available
	if len(classes) == 1 {
		maxClass := ""
		for i := range classes {
			maxClass = i
		}
		ret := &DecisionTreeNode{
			LeafNode,
			nil,
			nil,
			classes,
			maxClass,
			from.GetClassAttrPtr(),
		}
		return ret
	}

	// Only have the class attribute
	maxVal := 0
	maxClass := ""
	for i := range classes {
		if classes[i] > maxVal {
			maxClass = i
			maxVal = classes[i]
		}
	}

	// If there are no more Attributes left to split on,
	// return a DecisionTreeLeaf with the majority class
	if from.GetAttributeCount() == 2 {
		ret := &DecisionTreeNode{
			LeafNode,
			nil,
			nil,
			classes,
			maxClass,
			from.GetClassAttrPtr(),
		}
		return ret
	}

	ret := &DecisionTreeNode{
		RuleNode,
		nil,
		nil,
		classes,
		maxClass,
		from.GetClassAttrPtr(),
	}

	// Generate a return structure
	// Generate the splitting attribute
	splitOnAttribute := with.GenerateSplitAttribute(from)
	if splitOnAttribute == nil {
		// Can't determine, just return what we have
		return ret
	}
	// Split the attributes based on this attribute's value
	splitInstances := from.DecomposeOnAttributeValues(splitOnAttribute)
	// Create new children from these attributes
	ret.Children = make(map[string]*DecisionTreeNode)
	for k := range splitInstances {
		newInstances := splitInstances[k]
		ret.Children[k] = InferID3Tree(newInstances, with)
	}
	ret.SplitAttr = splitOnAttribute
	return ret
}