func main() { //Parses the infamous Iris data. cols, rows, _, labels, data := data.ParseCsv("datasets/iris.csv", 4, []int{0, 1, 2}) //Initialises a new KNN classifier cls := knn.NewKnnClassifier("euclidean") cls.Fit(labels, data, rows, cols) for { //Creates a random array of N float64s between 0 and 7 randArray := util.RandomArray(3, 7) //Calculates the Euclidean distance and returns the most popular label labels := cls.Predict(randArray, 3) fmt.Println(labels) } }
func main() { //Parses the infamous Iris data. cols, rows, _, labels, data := data.ParseCsv("datasets/randomdata.csv", 2, []int{0, 1}) newlabels := util.ConvertLabelsToFloat(labels) //Initialises a new KNN classifier cls := knn.NewKnnRegressor("euclidean") cls.Fit(newlabels, data, rows, cols) for { //Creates a random array of N float64s between 0 and Y randArray := util.RandomArray(2, 100) //Initialises a vector with this array random := mat64.NewDense(1, 2, randArray) //Calculates the Euclidean distance and returns the most popular label outcome := cls.Predict(random, 3) fmt.Println(outcome) } }