// For use with solve.MultiDim: // T_c convergence is better if we solve for D1 and Mu_h first. func CritTempD1MuSystem(env *tempAll.Environment) (solve.DiffSystem, []float64) { variables := []string{"D1", "Mu_h"} diffD1 := tempPair.AbsErrorD1(env, variables) diffMu_h := tempPair.AbsErrorBeta(env, variables) system := solve.Combine([]solve.Diffable{diffD1, diffMu_h}) start := []float64{env.D1, env.Mu_h} return system, start }
// System to solve (D1, Mu_b, x) with Mu_h and Beta fixed func D1Mu_bXSystem(env *tempAll.Environment) (solve.DiffSystem, []float64) { variables := []string{"D1", "Mu_b", "X"} diffD1 := tempPair.AbsErrorD1(env, variables) diffMu_b := AbsErrorMu_b(env, variables) diffX := AbsErrorX(env, variables) system := solve.Combine([]solve.Diffable{diffD1, diffMu_b, diffX}) start := []float64{env.D1, env.Mu_b, env.X} return system, start }
// For use with solve.MultiDim: full system for T_c < T < T_p. func FlucTempFullSystem(env *tempAll.Environment) (solve.DiffSystem, []float64) { variables := []string{"D1", "Mu_h", "Beta"} diffD1 := tempPair.AbsErrorD1(env, variables) diffMu_h := AbsErrorMu_h(env, variables) diffBeta := AbsErrorBeta(env, variables) system := solve.Combine([]solve.Diffable{diffD1, diffMu_h, diffBeta}) start := []float64{env.D1, env.Mu_h, env.Beta} return system, start }
// For use with solve.Iterative: func CritTempStages(env *tempAll.Environment) ([]solve.DiffSystem, []vec.Vector, func([]vec.Vector)) { vars0 := []string{"D1", "Mu_h"} vars1 := []string{"Beta"} diffD1 := tempPair.AbsErrorD1(env, vars0) diffMu_h := tempPair.AbsErrorBeta(env, vars0) system0 := solve.Combine([]solve.Diffable{diffD1, diffMu_h}) diffBeta := AbsErrorBeta(env, vars1) system1 := solve.Combine([]solve.Diffable{diffBeta}) stages := []solve.DiffSystem{system0, system1} start := []vec.Vector{[]float64{env.D1, env.Mu_h}, []float64{env.Beta}} accept := func(x []vec.Vector) { env.D1 = x[0][0] env.Mu_h = x[0][1] env.Beta = x[1][0] } return stages, start, accept }