func circle2segmentFunc(contacts []*Contact, circle *CircleShape, segment *SegmentShape) int { rsum := circle.Radius + segment.Radius //Calculate normal distance from segment dn := vect.Dot(segment.Tn, circle.Tc) - vect.Dot(segment.Ta, segment.Tn) dist := vect.FAbs(dn) - rsum if dist > 0.0 { return 0 } //Calculate tangential distance along segment dt := -vect.Cross(segment.Tn, circle.Tc) dtMin := -vect.Cross(segment.Tn, segment.Ta) dtMax := -vect.Cross(segment.Tn, segment.Tb) // Decision tree to decide which feature of the segment to collide with. if dt < dtMin { if dt < (dtMin - rsum) { return 0 } else { return segmentEncapQuery(circle.Tc, segment.Ta, circle.Radius, segment.Radius, contacts[0], segment.A_tangent) } } else { if dt < dtMax { n := segment.Tn if dn >= 0.0 { n.Mult(-1) } con := contacts[0] pos := vect.Add(circle.Tc, vect.Mult(n, circle.Radius+dist*0.5)) con.reset(pos, n, dist, 0) return 1 } else { if dt < (dtMax + rsum) { return segmentEncapQuery(circle.Tc, segment.Tb, circle.Radius, segment.Radius, contacts[0], segment.B_tangent) } else { return 0 } } } panic("Never reached") }
func Proximity(a, b AABB) float32 { return vect.FAbs(a.Lower.X+a.Upper.X-b.Lower.X-b.Upper.X) + vect.FAbs(a.Lower.Y+a.Upper.Y-b.Lower.Y-b.Upper.Y) }