func main() { defer util.Run()() var ring *pfring.Ring var err error if ring, err = pfring.NewRing(*iface, uint32(*snaplen), pfring.FlagPromisc); err != nil { log.Fatalln("pfring ring creation error:", err) } if len(flag.Args()) > 0 { bpffilter := strings.Join(flag.Args(), " ") fmt.Fprintf(os.Stderr, "Using BPF filter %q\n", bpffilter) if err = ring.SetBPFFilter(bpffilter); err != nil { log.Fatalln("BPF filter error:", err) } } if *cluster >= 0 { if err = ring.SetCluster(*cluster, pfring.ClusterType(*clustertype)); err != nil { log.Fatalln("pfring SetCluster error:", err) } } if err = ring.SetSocketMode(pfring.ReadOnly); err != nil { log.Fatalln("pfring SetSocketMode error:", err) } else if err = ring.Enable(); err != nil { log.Fatalln("pfring Enable error:", err) } dumpcommand.Run(ring) }
func main() { defer util.Run()() router, err := routing.New() if err != nil { log.Fatal("routing error:", err) } for _, arg := range flag.Args() { var ip net.IP if ip = net.ParseIP(arg); ip == nil { log.Printf("non-ip target: %q", arg) continue } else if ip = ip.To4(); ip == nil { log.Printf("non-ipv4 target: %q", arg) continue } // Note: newScanner creates and closes a pcap Handle once for // every scan target. We could do much better, were this not an // example ;) s, err := newScanner(ip, router) if err != nil { log.Printf("unable to create scanner for %v: %v", ip, err) continue } if err := s.scan(); err != nil { log.Printf("unable to scan %v: %v", ip, err) } s.close() } }
func main() { defer util.Run()() var handle *pcap.Handle var err error // Set up pcap packet capture if *fname != "" { log.Printf("Reading from pcap dump %q", *fname) handle, err = pcap.OpenOffline(*fname) } else { log.Printf("Starting capture on interface %q", *iface) handle, err = pcap.OpenLive(*iface, int32(*snaplen), true, pcap.BlockForever) } if err != nil { log.Fatal(err) } if err := handle.SetBPFFilter(*filter); err != nil { log.Fatal(err) } // Set up assembly streamFactory := &httpStreamFactory{} streamPool := tcpassembly.NewStreamPool(streamFactory) assembler := tcpassembly.NewAssembler(streamPool) log.Println("reading in packets") // Read in packets, pass to assembler. packetSource := gopacket.NewPacketSource(handle, handle.LinkType()) packets := packetSource.Packets() ticker := time.Tick(time.Minute) for { select { case packet := <-packets: // A nil packet indicates the end of a pcap file. if packet == nil { return } if *logAllPackets { log.Println(packet) } if packet.NetworkLayer() == nil || packet.TransportLayer() == nil || packet.TransportLayer().LayerType() != layers.LayerTypeTCP { log.Println("Unusable packet") continue } tcp := packet.TransportLayer().(*layers.TCP) assembler.AssembleWithTimestamp(packet.NetworkLayer().NetworkFlow(), tcp, packet.Metadata().Timestamp) case <-ticker: // Every minute, flush connections that haven't seen activity in the past 2 minutes. assembler.FlushOlderThan(time.Now().Add(time.Minute * -2)) } } }
func main() { defer util.Run()() var handle *pcap.Handle var err error if *fname != "" { if handle, err = pcap.OpenOffline(*fname); err != nil { log.Fatal("PCAP OpenOffline error:", err) } } else { // This is a little complicated because we want to allow all possible options // for creating the packet capture handle... instead of all this you can // just call pcap.OpenLive if you want a simple handle. inactive, err := pcap.NewInactiveHandle(*iface) if err != nil { log.Fatal("could not create: %v", err) } defer inactive.CleanUp() if err = inactive.SetSnapLen(*snaplen); err != nil { log.Fatal("could not set snap length: %v", err) } else if err = inactive.SetPromisc(*promisc); err != nil { log.Fatal("could not set promisc mode: %v", err) } else if err = inactive.SetTimeout(time.Second); err != nil { log.Fatal("could not set timeout: %v", err) } if *tstype != "" { if t, err := pcap.TimestampSourceFromString(*tstype); err != nil { log.Fatalf("Supported timestamp types: %v", inactive.SupportedTimestamps()) } else if err := inactive.SetTimestampSource(t); err != nil { log.Fatalf("Supported timestamp types: %v", inactive.SupportedTimestamps()) } } if handle, err = inactive.Activate(); err != nil { log.Fatal("PCAP Activate error:", err) } defer handle.Close() if len(flag.Args()) > 0 { bpffilter := strings.Join(flag.Args(), " ") fmt.Fprintf(os.Stderr, "Using BPF filter %q\n", bpffilter) if err = handle.SetBPFFilter(bpffilter); err != nil { log.Fatal("BPF filter error:", err) } } } dumpcommand.Run(handle) }
func main() { defer util.Run()() log.Printf("starting capture on interface %q", *iface) // Set up pcap packet capture handle, err := pcap.OpenLive(*iface, int32(*snaplen), true, pcap.BlockForever) if err != nil { panic(err) } if err := handle.SetBPFFilter(*filter); err != nil { panic(err) } // Set up assembly streamFactory := &myFactory{bidiMap: make(map[key]*bidi)} streamPool := tcpassembly.NewStreamPool(streamFactory) assembler := tcpassembly.NewAssembler(streamPool) log.Println("reading in packets") // Read in packets, pass to assembler. packetSource := gopacket.NewPacketSource(handle, handle.LinkType()) packets := packetSource.Packets() ticker := time.Tick(timeout / 4) for { select { case packet := <-packets: if *logAllPackets { log.Println(packet) } if packet.NetworkLayer() == nil || packet.TransportLayer() == nil || packet.TransportLayer().LayerType() != layers.LayerTypeTCP { log.Println("Unusable packet") continue } tcp := packet.TransportLayer().(*layers.TCP) assembler.AssembleWithTimestamp(packet.NetworkLayer().NetworkFlow(), tcp, packet.Metadata().Timestamp) case <-ticker: // Every minute, flush connections that haven't seen activity in the past minute. log.Println("---- FLUSHING ----") assembler.FlushOlderThan(time.Now().Add(-timeout)) streamFactory.collectOldStreams() } } }
func main() { defer util.Run()() flushDuration, err := time.ParseDuration(*flushAfter) if err != nil { log.Fatal("invalid flush duration: ", *flushAfter) } log.Printf("starting capture on interface %q", *iface) // Set up pcap packet capture handle, err := pcap.OpenLive(*iface, int32(*snaplen), true, flushDuration/2) if err != nil { log.Fatal("error opening pcap handle: ", err) } if err := handle.SetBPFFilter(*filter); err != nil { log.Fatal("error setting BPF filter: ", err) } // Set up assembly streamFactory := &statsStreamFactory{} streamPool := tcpassembly.NewStreamPool(streamFactory) assembler := tcpassembly.NewAssembler(streamPool) assembler.MaxBufferedPagesPerConnection = *bufferedPerConnection assembler.MaxBufferedPagesTotal = *bufferedTotal log.Println("reading in packets") // We use a DecodingLayerParser here instead of a simpler PacketSource. // This approach should be measurably faster, but is also more rigid. // PacketSource will handle any known type of packet safely and easily, // but DecodingLayerParser will only handle those packet types we // specifically pass in. This trade-off can be quite useful, though, in // high-throughput situations. var eth layers.Ethernet var dot1q layers.Dot1Q var ip4 layers.IPv4 var ip6 layers.IPv6 var ip6extensions layers.IPv6ExtensionSkipper var tcp layers.TCP var payload gopacket.Payload parser := gopacket.NewDecodingLayerParser(layers.LayerTypeEthernet, ð, &dot1q, &ip4, &ip6, &ip6extensions, &tcp, &payload) decoded := make([]gopacket.LayerType, 0, 4) nextFlush := time.Now().Add(flushDuration / 2) var byteCount int64 start := time.Now() loop: for ; *packetCount != 0; *packetCount-- { // Check to see if we should flush the streams we have // that haven't seen any new data in a while. Note we set a // timeout on our PCAP handle, so this should happen even if we // never see packet data. if time.Now().After(nextFlush) { stats, _ := handle.Stats() log.Printf("flushing all streams that haven't seen packets in the last 2 minutes, pcap stats: %+v", stats) assembler.FlushOlderThan(time.Now().Add(flushDuration)) nextFlush = time.Now().Add(flushDuration / 2) } // To speed things up, we're also using the ZeroCopy method for // reading packet data. This method is faster than the normal // ReadPacketData, but the returned bytes in 'data' are // invalidated by any subsequent ZeroCopyReadPacketData call. // Note that tcpassembly is entirely compatible with this packet // reading method. This is another trade-off which might be // appropriate for high-throughput sniffing: it avoids a packet // copy, but its cost is much more careful handling of the // resulting byte slice. data, ci, err := handle.ZeroCopyReadPacketData() if err != nil { log.Printf("error getting packet: %v", err) continue } err = parser.DecodeLayers(data, &decoded) if err != nil { log.Printf("error decoding packet: %v", err) continue } if *logAllPackets { log.Printf("decoded the following layers: %v", decoded) } byteCount += int64(len(data)) // Find either the IPv4 or IPv6 address to use as our network // layer. foundNetLayer := false var netFlow gopacket.Flow for _, typ := range decoded { switch typ { case layers.LayerTypeIPv4: netFlow = ip4.NetworkFlow() foundNetLayer = true case layers.LayerTypeIPv6: netFlow = ip6.NetworkFlow() foundNetLayer = true case layers.LayerTypeTCP: if foundNetLayer { assembler.AssembleWithTimestamp(netFlow, &tcp, ci.Timestamp) } else { log.Println("could not find IPv4 or IPv6 layer, inoring") } continue loop } } log.Println("could not find TCP layer") } assembler.FlushAll() log.Printf("processed %d bytes in %v", byteCount, time.Since(start)) }