示例#1
0
func Example() {
	var seg jiebago.Segmenter
	seg.LoadDictionary("dict.txt")

	print := func(ch <-chan string) {
		for word := range ch {
			fmt.Printf(" %s /", word)
		}
		fmt.Println()
	}

	fmt.Print("【全模式】:")
	print(seg.CutAll("我来到北京清华大学"))

	fmt.Print("【精确模式】:")
	print(seg.Cut("我来到北京清华大学", false))

	fmt.Print("【新词识别】:")
	print(seg.Cut("他来到了网易杭研大厦", true))

	fmt.Print("【搜索引擎模式】:")
	print(seg.CutForSearch("小明硕士毕业于中国科学院计算所,后在日本京都大学深造", true))
	// Output:
	// 【全模式】: 我 / 来到 / 北京 / 清华 / 清华大学 / 华大 / 大学 /
	// 【精确模式】: 我 / 来到 / 北京 / 清华大学 /
	// 【新词识别】: 他 / 来到 / 了 / 网易 / 杭研 / 大厦 /
	// 【搜索引擎模式】: 小明 / 硕士 / 毕业 / 于 / 中国 / 科学 / 学院 / 科学院 / 中国科学院 / 计算 / 计算所 / , / 后 / 在 / 日本 / 京都 / 大学 / 日本京都大学 / 深造 /
}
示例#2
0
文件: tokenizer.go 项目: 9466/jiebago
/*
NewJiebaTokenizer creates a new JiebaTokenizer.

Parameters:

    dictFilePath: path of the dictioanry file.

    hmm: whether to use Hidden Markov Model to cut unknown words,
    i.e. not found in dictionary. For example word "安卓" (means "Android" in
    English) not in the dictionary file. If hmm is set to false, it will be
    cutted into two single words "安" and "卓", if hmm is set to true, it will
    be traded as one single word because Jieba using Hidden Markov Model with
    Viterbi algorithm to guess the best possibility.

    searchMode: whether to further cut long words into serveral short words.
    In Chinese, some long words may contains other words, for example "交换机"
    is a Chinese word for "Switcher", if sechMode is false, it will trade
    "交换机" as a single word. If searchMode is true, it will further split
    this word into "交换", "换机", which are valid Chinese words.
*/
func NewJiebaTokenizer(dictFilePath string, hmm, searchMode bool) (analysis.Tokenizer, error) {
	var seg jiebago.Segmenter
	err := seg.LoadDictionary(dictFilePath)
	return &JiebaTokenizer{
		seg:        seg,
		hmm:        hmm,
		searchMode: searchMode,
	}, err
}
示例#3
0
func Example_suggestFrequency() {
	var seg jiebago.Segmenter
	seg.LoadDictionary("dict.txt")

	print := func(ch <-chan string) {
		for word := range ch {
			fmt.Printf(" %s /", word)
		}
		fmt.Println()
	}
	sentence := "超敏C反应蛋白是什么?"
	fmt.Print("Before:")
	print(seg.Cut(sentence, false))
	word := "超敏C反应蛋白"
	oldFrequency, _ := seg.Frequency(word)
	frequency := seg.SuggestFrequency(word)
	fmt.Printf("%s current frequency: %f, suggest: %f.\n", word, oldFrequency, frequency)
	seg.AddWord(word, frequency)
	fmt.Print("After:")
	print(seg.Cut(sentence, false))

	sentence = "如果放到post中将出错"
	fmt.Print("Before:")
	print(seg.Cut(sentence, false))
	word = "中将"
	oldFrequency, _ = seg.Frequency(word)
	frequency = seg.SuggestFrequency("中", "将")
	fmt.Printf("%s current frequency: %f, suggest: %f.\n", word, oldFrequency, frequency)
	seg.AddWord(word, frequency)
	fmt.Print("After:")
	print(seg.Cut(sentence, false))

	sentence = "今天天气不错"
	fmt.Print("Before:")
	print(seg.Cut(sentence, false))
	word = "今天天气"
	oldFrequency, _ = seg.Frequency(word)
	frequency = seg.SuggestFrequency("今天", "天气")
	fmt.Printf("%s current frequency: %f, suggest: %f.\n", word, oldFrequency, frequency)
	seg.AddWord(word, frequency)
	fmt.Print("After:")
	print(seg.Cut(sentence, false))
	// Output:
	// Before: 超敏 / C / 反应 / 蛋白 / 是 / 什么 / ? /
	// 超敏C反应蛋白 current frequency: 0.000000, suggest: 1.000000.
	// After: 超敏C反应蛋白 / 是 / 什么 / ? /
	// Before: 如果 / 放到 / post / 中将 / 出错 /
	// 中将 current frequency: 763.000000, suggest: 494.000000.
	// After: 如果 / 放到 / post / 中 / 将 / 出错 /
	// Before: 今天天气 / 不错 /
	// 今天天气 current frequency: 3.000000, suggest: 0.000000.
	// After: 今天 / 天气 / 不错 /
}
示例#4
0
func Example_loadUserDictionary() {
	var seg jiebago.Segmenter
	seg.LoadDictionary("dict.txt")

	print := func(ch <-chan string) {
		for word := range ch {
			fmt.Printf(" %s /", word)
		}
		fmt.Println()
	}
	sentence := "李小福是创新办主任也是云计算方面的专家"
	fmt.Print("Before:")
	print(seg.Cut(sentence, true))

	seg.LoadUserDictionary("userdict.txt")

	fmt.Print("After:")
	print(seg.Cut(sentence, true))
	// Output:
	// Before: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
	// After: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
}