func (this *kernel) EnqueueTask(queue CommandQueue, event_wait_list []Event) (Event, error) { var errCode cl.CL_int var event_id cl.CL_event numEvents := cl.CL_uint(len(event_wait_list)) events := make([]cl.CL_event, numEvents) for i := cl.CL_uint(0); i < numEvents; i++ { events[i] = event_wait_list[i].GetID() } if errCode = cl.CLEnqueueTask(queue.GetID(), this.kernel_id, numEvents, events, &event_id); errCode != cl.CL_SUCCESS { return nil, fmt.Errorf("EnqueueTask failure with errcode_ret %d: %s", errCode, cl.ERROR_CODES_STRINGS[-errCode]) } else { return &event{event_id}, nil } }
func TestQueue(t *testing.T) { /* Host/device data structures */ var platform [1]cl.CL_platform_id var device [1]cl.CL_device_id var context cl.CL_context var queue cl.CL_command_queue var err cl.CL_int /* Program/kernel data structures */ var program cl.CL_program var program_buffer [1][]byte var program_log interface{} var program_size [1]cl.CL_size_t var log_size cl.CL_size_t var kernel cl.CL_kernel /* Access the first installed platform */ err = cl.CLGetPlatformIDs(1, platform[:], nil) if err < 0 { t.Errorf("Couldn't find any platforms") } /* Access the first GPU/CPU */ err = cl.CLGetDeviceIDs(platform[0], cl.CL_DEVICE_TYPE_GPU, 1, device[:], nil) if err == cl.CL_DEVICE_NOT_FOUND { err = cl.CLGetDeviceIDs(platform[0], cl.CL_DEVICE_TYPE_CPU, 1, device[:], nil) } if err < 0 { t.Errorf("Couldn't find any devices") } /* Create a context */ context = cl.CLCreateContext(nil, 1, device[:], nil, nil, &err) if err < 0 { t.Errorf("Couldn't create a context") } /* Read each program file and place content into buffer array */ program_handle, err1 := os.Open("blank.cl") if err1 != nil { t.Errorf("Couldn't find the program file") } defer program_handle.Close() fi, err2 := program_handle.Stat() if err2 != nil { t.Errorf("Couldn't find the program stat") } program_size[0] = cl.CL_size_t(fi.Size()) program_buffer[0] = make([]byte, program_size[0]) read_size, err3 := program_handle.Read(program_buffer[0]) if err3 != nil || cl.CL_size_t(read_size) != program_size[0] { t.Errorf("read file error or file size wrong") } /* Create program from file */ program = cl.CLCreateProgramWithSource(context, 1, program_buffer[:], program_size[:], &err) if err < 0 { t.Errorf("Couldn't create the program") } /* Build program */ err = cl.CLBuildProgram(program, 1, device[:], nil, nil, nil) if err < 0 { /* Find size of log and print to std output */ cl.CLGetProgramBuildInfo(program, device[0], cl.CL_PROGRAM_BUILD_LOG, 0, nil, &log_size) //program_log = (char*) malloc(log_size+1); //program_log[log_size] = '\0'; cl.CLGetProgramBuildInfo(program, device[0], cl.CL_PROGRAM_BUILD_LOG, log_size, &program_log, nil) t.Errorf("%s\n", program_log) //free(program_log); } /* Create the kernel */ kernel = cl.CLCreateKernel(program, []byte("blank"), &err) if err < 0 { t.Errorf("Couldn't create the kernel") } /* Create the command queue */ queue = cl.CLCreateCommandQueue(context, device[0], 0, &err) if err < 0 { t.Errorf("Couldn't create the command queue") } /* Enqueue the kernel execution command */ err = cl.CLEnqueueTask(queue, kernel, 0, nil, nil) if err < 0 { t.Errorf("Couldn't enqueue the kernel execution command") } else { t.Logf("Successfully queued kernel.\n") } /* Deallocate resources */ cl.CLReleaseCommandQueue(queue) cl.CLReleaseKernel(kernel) cl.CLReleaseProgram(program) cl.CLReleaseContext(context) }
func main() { /* OpenCL data structures */ var device []cl.CL_device_id var context cl.CL_context var queue cl.CL_command_queue var program *cl.CL_program var kernel cl.CL_kernel var err cl.CL_int /* Data and buffers */ var select1 [4]float32 var select2 [2]cl.CL_uchar var select1_buffer, select2_buffer cl.CL_mem /* Create a context */ device = utils.Create_device() context = cl.CLCreateContext(nil, 1, device[:], nil, nil, &err) if err < 0 { println("Couldn't create a context") return } /* Create a kernel */ program = utils.Build_program(context, device[:], PROGRAM_FILE, nil) kernel = cl.CLCreateKernel(*program, KERNEL_FUNC, &err) if err < 0 { println("Couldn't create a kernel") return } /* Create a write-only buffer to hold the output data */ select1_buffer = cl.CLCreateBuffer(context, cl.CL_MEM_WRITE_ONLY, cl.CL_size_t(unsafe.Sizeof(select1)), nil, &err) if err < 0 { println("Couldn't create a buffer") return } select2_buffer = cl.CLCreateBuffer(context, cl.CL_MEM_WRITE_ONLY, cl.CL_size_t(unsafe.Sizeof(select2)), nil, &err) /* Create kernel argument */ err = cl.CLSetKernelArg(kernel, 0, cl.CL_size_t(unsafe.Sizeof(select1_buffer)), unsafe.Pointer(&select1_buffer)) if err < 0 { println("Couldn't set a kernel argument") return } cl.CLSetKernelArg(kernel, 1, cl.CL_size_t(unsafe.Sizeof(select2_buffer)), unsafe.Pointer(&select2_buffer)) /* Create a command queue */ queue = cl.CLCreateCommandQueue(context, device[0], 0, &err) if err < 0 { println("Couldn't create a command queue") return } /* Enqueue kernel */ err = cl.CLEnqueueTask(queue, kernel, 0, nil, nil) if err < 0 { println("Couldn't enqueue the kernel") return } /* Read and print the result */ err = cl.CLEnqueueReadBuffer(queue, select1_buffer, cl.CL_TRUE, 0, cl.CL_size_t(unsafe.Sizeof(select1)), unsafe.Pointer(&select1), 0, nil, nil) if err < 0 { println("Couldn't read the buffer") return } cl.CLEnqueueReadBuffer(queue, select2_buffer, cl.CL_TRUE, 0, cl.CL_size_t(unsafe.Sizeof(select2)), unsafe.Pointer(&select2), 0, nil, nil) fmt.Printf("select: ") for i := 0; i < 3; i++ { fmt.Printf("%.2f, ", select1[i]) } fmt.Printf("%.2f\n", select1[3]) fmt.Printf("bitselect: %X, %X\n", select2[0], select2[1]) /* Deallocate resources */ cl.CLReleaseMemObject(select1_buffer) cl.CLReleaseMemObject(select2_buffer) cl.CLReleaseKernel(kernel) cl.CLReleaseCommandQueue(queue) cl.CLReleaseProgram(*program) cl.CLReleaseContext(context) }
func main() { /* Host/device data structures */ var device []cl.CL_device_id var context cl.CL_context var queue cl.CL_command_queue var program *cl.CL_program var kernel cl.CL_kernel var err cl.CL_int /* Data and buffers */ var test [16]byte var test_buffer cl.CL_mem /* Create a context */ device = utils.Create_device() context = cl.CLCreateContext(nil, 1, device[:], nil, nil, &err) if err < 0 { println("Couldn't create a context") return } /* Build the program and create a kernel */ program = utils.Build_program(context, device[:], PROGRAM_FILE, nil) kernel = cl.CLCreateKernel(*program, KERNEL_FUNC, &err) if err < 0 { println("Couldn't create a kernel") return } /* Create a write-only buffer to hold the output data */ test_buffer = cl.CLCreateBuffer(context, cl.CL_MEM_WRITE_ONLY, cl.CL_size_t(unsafe.Sizeof(test)), nil, &err) if err < 0 { println("Couldn't create a buffer") return } /* Create kernel argument */ err = cl.CLSetKernelArg(kernel, 0, cl.CL_size_t(unsafe.Sizeof(test_buffer)), unsafe.Pointer(&test_buffer)) if err < 0 { println("Couldn't set a kernel argument") return } /* Create a command queue */ queue = cl.CLCreateCommandQueue(context, device[0], 0, &err) if err < 0 { println("Couldn't create a command queue") return } /* Enqueue kernel */ err = cl.CLEnqueueTask(queue, kernel, 0, nil, nil) if err < 0 { println("Couldn't enqueue the kernel") return } /* Read and print the result */ err = cl.CLEnqueueReadBuffer(queue, test_buffer, cl.CL_TRUE, 0, cl.CL_size_t(unsafe.Sizeof(test)), unsafe.Pointer(&test), 0, nil, nil) if err < 0 { println("Couldn't read the buffer") return } for i := 0; i < 15; i++ { fmt.Printf("0x%X, ", test[i]) } fmt.Printf("0x%X\n", test[15]) /* Deallocate resources */ cl.CLReleaseMemObject(test_buffer) cl.CLReleaseKernel(kernel) cl.CLReleaseCommandQueue(queue) cl.CLReleaseProgram(*program) cl.CLReleaseContext(context) }
func main() { /* OpenCL data structures */ var device []cl.CL_device_id var context cl.CL_context var queue cl.CL_command_queue var program *cl.CL_program var kernel cl.CL_kernel var err cl.CL_int /* Data and events */ var data []float32 var data_buffer cl.CL_mem var user_event, kernel_event, read_event [1]cl.CL_event /* Initialize data */ data = make([]float32, 4) for i := 0; i < 4; i++ { data[i] = float32(i) * 1.0 } /* Create a device and context */ device = utils.Create_device() context = cl.CLCreateContext(nil, 1, device[:], nil, nil, &err) if err < 0 { println("Couldn't create a context") return } /* Build the program and create a kernel */ program = utils.Build_program(context, device[:], PROGRAM_FILE, nil) kernel = cl.CLCreateKernel(*program, KERNEL_FUNC, &err) if err < 0 { println("Couldn't create a kernel") return } /* Create a buffer to hold data */ data_buffer = cl.CLCreateBuffer(context, cl.CL_MEM_READ_WRITE|cl.CL_MEM_COPY_HOST_PTR, cl.CL_size_t(unsafe.Sizeof(data[0]))*4, unsafe.Pointer(&data[0]), &err) if err < 0 { println("Couldn't create a buffer") return } /* Create kernel argument */ err = cl.CLSetKernelArg(kernel, 0, cl.CL_size_t(unsafe.Sizeof(data_buffer)), unsafe.Pointer(&data_buffer)) if err < 0 { println("Couldn't set a kernel argument") return } /* Create a command queue */ queue = cl.CLCreateCommandQueue(context, device[0], cl.CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err) if err < 0 { println("Couldn't create a command queue") return } /* Configure events */ user_event[0] = cl.CLCreateUserEvent(context, &err) if err < 0 { println("Couldn't enqueue the kernel") return } /* Enqueue kernel */ err = cl.CLEnqueueTask(queue, kernel, 1, user_event[:], &kernel_event[0]) if err < 0 { println("Couldn't enqueue the kernel") return } /* Read the buffer */ err = cl.CLEnqueueReadBuffer(queue, data_buffer, cl.CL_FALSE, 0, cl.CL_size_t(unsafe.Sizeof(data[0]))*4, unsafe.Pointer(&data[0]), 1, kernel_event[:], &read_event[0]) if err < 0 { println("Couldn't read the buffer") return } /* Set callback for event */ err = cl.CLSetEventCallback(read_event[0], cl.CL_COMPLETE, read_complete, unsafe.Pointer(&data)) if err < 0 { println("Couldn't set callback for event") return } /* Sleep for a second to demonstrate the that commands haven't started executing. Then prompt user */ time.Sleep(1) fmt.Printf("Old data: %4.2f, %4.2f, %4.2f, %4.2f\n", data[0], data[1], data[2], data[3]) fmt.Printf("Press ENTER to continue.\n") //getchar(); reader := bufio.NewReader(os.Stdin) reader.ReadString('\n') /* Set user event to success */ cl.CLSetUserEventStatus(user_event[0], cl.CL_SUCCESS) /* Deallocate resources */ cl.CLReleaseEvent(read_event[0]) cl.CLReleaseEvent(kernel_event[0]) cl.CLReleaseEvent(user_event[0]) cl.CLReleaseMemObject(data_buffer) cl.CLReleaseKernel(kernel) cl.CLReleaseCommandQueue(queue) cl.CLReleaseProgram(*program) cl.CLReleaseContext(context) }
func main() { /* OpenCL data structures */ var device []cl.CL_device_id var context cl.CL_context var queue cl.CL_command_queue var program *cl.CL_program var kernel cl.CL_kernel var err cl.CL_int /* Data and buffers */ var a float32 = 6.0 var b float32 = 2.0 var result float32 var a_buffer, b_buffer, output_buffer cl.CL_mem /* Extension data */ var sizeofuint cl.CL_uint var addr_data interface{} var ext_data interface{} fp64_ext := "cl_khr_fp64" var ext_size cl.CL_size_t var options []byte /* Create a device and context */ device = utils.Create_device() context = cl.CLCreateContext(nil, 1, device[:], nil, nil, &err) if err < 0 { println("Couldn't create a context") return } /* Obtain the device data */ if cl.CLGetDeviceInfo(device[0], cl.CL_DEVICE_ADDRESS_BITS, cl.CL_size_t(unsafe.Sizeof(sizeofuint)), &addr_data, nil) < 0 { println("Couldn't read extension data") return } fmt.Printf("Address width: %v\n", addr_data.(cl.CL_uint)) /* Define "FP_64" option if doubles are supported */ cl.CLGetDeviceInfo(device[0], cl.CL_DEVICE_EXTENSIONS, 0, nil, &ext_size) // ext_data = (char*)malloc(ext_size + 1); // ext_data[ext_size] = '\0'; cl.CLGetDeviceInfo(device[0], cl.CL_DEVICE_EXTENSIONS, ext_size, &ext_data, nil) if strings.Contains(ext_data.(string), fp64_ext) { fmt.Printf("The %s extension is supported.\n", fp64_ext) options = []byte("-DFP_64 ") } else { fmt.Printf("The %s extension is not supported. %s\n", fp64_ext, ext_data.(string)) } /* Build the program and create the kernel */ program = utils.Build_program(context, device[:], PROGRAM_FILE, options) kernel = cl.CLCreateKernel(*program, KERNEL_FUNC, &err) if err < 0 { println("Couldn't create a kernel") return } /* Create CL buffers to hold input and output data */ a_buffer = cl.CLCreateBuffer(context, cl.CL_MEM_READ_ONLY| cl.CL_MEM_COPY_HOST_PTR, cl.CL_size_t(unsafe.Sizeof(a)), unsafe.Pointer(&a), &err) if err < 0 { println("Couldn't create a memory object") return } b_buffer = cl.CLCreateBuffer(context, cl.CL_MEM_READ_ONLY| cl.CL_MEM_COPY_HOST_PTR, cl.CL_size_t(unsafe.Sizeof(b)), unsafe.Pointer(&b), nil) output_buffer = cl.CLCreateBuffer(context, cl.CL_MEM_WRITE_ONLY, cl.CL_size_t(unsafe.Sizeof(b)), nil, nil) /* Create kernel arguments */ err = cl.CLSetKernelArg(kernel, 0, cl.CL_size_t(unsafe.Sizeof(a_buffer)), unsafe.Pointer(&a_buffer)) if err < 0 { println("Couldn't set a kernel argument") return } cl.CLSetKernelArg(kernel, 1, cl.CL_size_t(unsafe.Sizeof(b_buffer)), unsafe.Pointer(&b_buffer)) cl.CLSetKernelArg(kernel, 2, cl.CL_size_t(unsafe.Sizeof(output_buffer)), unsafe.Pointer(&output_buffer)) /* Create a command queue */ queue = cl.CLCreateCommandQueue(context, device[0], 0, &err) if err < 0 { println("Couldn't create a command queue") return } /* Enqueue kernel */ err = cl.CLEnqueueTask(queue, kernel, 0, nil, nil) if err < 0 { println("Couldn't enqueue the kernel") return } /* Read and print the result */ err = cl.CLEnqueueReadBuffer(queue, output_buffer, cl.CL_TRUE, 0, cl.CL_size_t(unsafe.Sizeof(result)), unsafe.Pointer(&result), 0, nil, nil) if err < 0 { println("Couldn't read the output buffer") return } fmt.Printf("The kernel result is %f\n", result) /* Deallocate resources */ cl.CLReleaseMemObject(a_buffer) cl.CLReleaseMemObject(b_buffer) cl.CLReleaseMemObject(output_buffer) cl.CLReleaseKernel(kernel) cl.CLReleaseCommandQueue(queue) cl.CLReleaseProgram(*program) cl.CLReleaseContext(context) }
func main() { /* OpenCL data structures */ var device []cl.CL_device_id var context cl.CL_context var queue cl.CL_command_queue var program *cl.CL_program var kernel cl.CL_kernel var err cl.CL_int /* Data and buffers */ var data_one, data_two, result_array [100]float32 var buffer_one, buffer_two cl.CL_mem var mapped_memory unsafe.Pointer /* Initialize arrays */ for i := 0; i < 100; i++ { data_one[i] = 1.0 * float32(i) data_two[i] = -1.0 * float32(i) result_array[i] = 0.0 } /* Create a device and context */ device = utils.Create_device() context = cl.CLCreateContext(nil, 1, device[:], nil, nil, &err) if err < 0 { println("Couldn't create a context") return } /* Build the program and create the kernel */ program = utils.Build_program(context, device[:], PROGRAM_FILE, nil) kernel = cl.CLCreateKernel(*program, []byte(KERNEL_FUNC), &err) if err < 0 { println("Couldn't create a kernel") return } /* Create buffers */ buffer_one = cl.CLCreateBuffer(context, cl.CL_MEM_READ_WRITE| cl.CL_MEM_COPY_HOST_PTR, cl.CL_size_t(unsafe.Sizeof(data_one)), unsafe.Pointer(&data_one[0]), &err) if err < 0 { println("Couldn't create buffer object 1") return } buffer_two = cl.CLCreateBuffer(context, cl.CL_MEM_READ_WRITE| cl.CL_MEM_COPY_HOST_PTR, cl.CL_size_t(unsafe.Sizeof(data_two)), unsafe.Pointer(&data_two), &err) if err < 0 { println("Couldn't create buffer object 2") return } /* Set buffers as arguments to the kernel */ err = cl.CLSetKernelArg(kernel, 0, cl.CL_size_t(unsafe.Sizeof(buffer_one)), unsafe.Pointer(&buffer_one)) err |= cl.CLSetKernelArg(kernel, 1, cl.CL_size_t(unsafe.Sizeof(buffer_two)), unsafe.Pointer(&buffer_two)) if err < 0 { println("Couldn't set the buffer as the kernel argument") return } /* Create a command queue */ queue = cl.CLCreateCommandQueue(context, device[0], 0, &err) if err < 0 { println("Couldn't create a command queue") return } /* Enqueue kernel */ err = cl.CLEnqueueTask(queue, kernel, 0, nil, nil) if err < 0 { println("Couldn't enqueue the kernel") return } /* Enqueue command to copy buffer one to buffer two */ err = cl.CLEnqueueCopyBuffer(queue, buffer_one, buffer_two, 0, 0, cl.CL_size_t(unsafe.Sizeof(data_one)), 0, nil, nil) if err < 0 { println("Couldn't perform the buffer copy") return } /* Enqueue command to map buffer two to host memory */ mapped_memory = cl.CLEnqueueMapBuffer(queue, buffer_two, cl.CL_TRUE, cl.CL_MAP_READ, 0, cl.CL_size_t(unsafe.Sizeof(data_two)), 0, nil, nil, &err) if err < 0 { println("Couldn't map the buffer to host memory") return } /* Transfer memory and unmap the buffer */ C.memcpy(unsafe.Pointer(&result_array[0]), mapped_memory, C.size_t(unsafe.Sizeof(data_two))) err = cl.CLEnqueueUnmapMemObject(queue, buffer_two, mapped_memory, 0, nil, nil) if err < 0 { println("Couldn't unmap the buffer") return } /* Display updated buffer */ for i := 0; i < 10; i++ { for j := 0; j < 10; j++ { fmt.Printf("%6.1f", result_array[j+i*10]) } fmt.Printf("\n") } /* Deallocate resources */ cl.CLReleaseMemObject(buffer_one) cl.CLReleaseMemObject(buffer_two) cl.CLReleaseKernel(kernel) cl.CLReleaseCommandQueue(queue) cl.CLReleaseProgram(*program) cl.CLReleaseContext(context) }
func main() { /* OpenCL data structures */ var device []cl.CL_device_id var context cl.CL_context var queue cl.CL_command_queue var program *cl.CL_program var kernel cl.CL_kernel var err cl.CL_int /* Data and buffers */ var full_matrix, zero_matrix [80]float32 var sizeoffloat32 = cl.CL_size_t(unsafe.Sizeof(full_matrix[0])) var buffer_origin = [3]cl.CL_size_t{5 * sizeoffloat32, 3, 0} var host_origin = [3]cl.CL_size_t{1 * sizeoffloat32, 1, 0} var region = [3]cl.CL_size_t{4 * sizeoffloat32, 4, 1} var matrix_buffer cl.CL_mem /* Initialize data */ for i := 0; i < 80; i++ { full_matrix[i] = float32(i) * 1.0 zero_matrix[i] = 0.0 } /* Create a device and context */ device = utils.Create_device() context = cl.CLCreateContext(nil, 1, device[:], nil, nil, &err) if err < 0 { println("Couldn't create a context") return } /* Build the program and create the kernel */ program = utils.Build_program(context, device[:], PROGRAM_FILE, nil) if program == nil { println("Couldn't build program") return } kernel = cl.CLCreateKernel(*program, []byte(KERNEL_FUNC), &err) if err < 0 { println("Couldn't create a kernel") return } /* Create a buffer to hold 80 floats */ matrix_buffer = cl.CLCreateBuffer(context, cl.CL_MEM_READ_WRITE| cl.CL_MEM_COPY_HOST_PTR, cl.CL_size_t(unsafe.Sizeof(full_matrix)), unsafe.Pointer(&full_matrix[0]), &err) if err < 0 { println("Couldn't create a buffer object") return } /* Set buffer as argument to the kernel */ err = cl.CLSetKernelArg(kernel, 0, cl.CL_size_t(unsafe.Sizeof(matrix_buffer)), unsafe.Pointer(&matrix_buffer)) if err < 0 { println("Couldn't set the buffer as the kernel argument") return } /* Create a command queue */ queue = cl.CLCreateCommandQueue(context, device[0], 0, &err) if err < 0 { println("Couldn't create a command queue") return } /* Enqueue kernel */ err = cl.CLEnqueueTask(queue, kernel, 0, nil, nil) if err < 0 { println("Couldn't enqueue the kernel") return } /* Enqueue command to write to buffer */ err = cl.CLEnqueueWriteBuffer(queue, matrix_buffer, cl.CL_TRUE, 0, cl.CL_size_t(unsafe.Sizeof(full_matrix)), unsafe.Pointer(&full_matrix[0]), 0, nil, nil) if err < 0 { println("Couldn't write to the buffer object") return } /* Enqueue command to read rectangle of data */ err = cl.CLEnqueueReadBufferRect(queue, matrix_buffer, cl.CL_TRUE, buffer_origin, host_origin, region, 10*sizeoffloat32, 0, 10*sizeoffloat32, 0, unsafe.Pointer(&zero_matrix[0]), 0, nil, nil) if err < 0 { println("Couldn't read the rectangle from the buffer object") return } /* Display updated buffer */ for i := 0; i < 8; i++ { for j := 0; j < 10; j++ { fmt.Printf("%6.1f", zero_matrix[j+i*10]) } fmt.Printf("\n") } /* Deallocate resources */ cl.CLReleaseMemObject(matrix_buffer) cl.CLReleaseKernel(kernel) cl.CLReleaseCommandQueue(queue) cl.CLReleaseProgram(*program) cl.CLReleaseContext(context) }
func main() { /* OpenCL data structures */ var device []cl.CL_device_id var context cl.CL_context var queue cl.CL_command_queue var program *cl.CL_program var kernel cl.CL_kernel var err cl.CL_int /* Data and events */ var num_vectors cl.CL_int var data [NUM_BYTES]byte var data_buffer cl.CL_mem var prof_event cl.CL_event var total_time cl.CL_ulong var time_start, time_end interface{} var mapped_memory unsafe.Pointer /* Create a device and context */ device = utils.Create_device() context = cl.CLCreateContext(nil, 1, device[:], nil, nil, &err) if err < 0 { println("Couldn't create a context") return } /* Build the program and create a kernel */ program = utils.Build_program(context, device[:], PROGRAM_FILE, nil) kernel = cl.CLCreateKernel(*program, KERNEL_FUNC, &err) if err < 0 { println("Couldn't create a kernel") return } /* Create a buffer to hold data */ data_buffer = cl.CLCreateBuffer(context, cl.CL_MEM_WRITE_ONLY, cl.CL_size_t(unsafe.Sizeof(data[0]))*NUM_BYTES, nil, &err) if err < 0 { println("Couldn't create a buffer") return } /* Create kernel argument */ err = cl.CLSetKernelArg(kernel, 0, cl.CL_size_t(unsafe.Sizeof(data_buffer)), unsafe.Pointer(&data_buffer)) if err < 0 { println("Couldn't set a kernel argument") return } /* Tell kernel number of char16 vectors */ num_vectors = NUM_BYTES / 16 cl.CLSetKernelArg(kernel, 1, cl.CL_size_t(unsafe.Sizeof(num_vectors)), unsafe.Pointer(&num_vectors)) /* Create a command queue */ queue = cl.CLCreateCommandQueue(context, device[0], cl.CL_QUEUE_PROFILING_ENABLE, &err) if err < 0 { println("Couldn't create a command queue") return } total_time = 0.0 for i := 0; i < NUM_ITERATIONS; i++ { /* Enqueue kernel */ err = cl.CLEnqueueTask(queue, kernel, 0, nil, nil) if err < 0 { println("Couldn't enqueue the kernel") return } if PROFILE_READ == 1 { /* Read the buffer */ err = cl.CLEnqueueReadBuffer(queue, data_buffer, cl.CL_TRUE, 0, cl.CL_size_t(unsafe.Sizeof(data[0]))*NUM_BYTES, unsafe.Pointer(&data[0]), 0, nil, &prof_event) if err < 0 { println("Couldn't read the buffer") return } } else { /* Create memory map */ mapped_memory = cl.CLEnqueueMapBuffer(queue, data_buffer, cl.CL_TRUE, cl.CL_MAP_READ, 0, cl.CL_size_t(unsafe.Sizeof(data[0]))*NUM_BYTES, 0, nil, &prof_event, &err) if err < 0 { println("Couldn't map the buffer to host memory") return } } /* Get profiling information */ cl.CLGetEventProfilingInfo(prof_event, cl.CL_PROFILING_COMMAND_START, cl.CL_size_t(unsafe.Sizeof(total_time)), &time_start, nil) cl.CLGetEventProfilingInfo(prof_event, cl.CL_PROFILING_COMMAND_END, cl.CL_size_t(unsafe.Sizeof(total_time)), &time_end, nil) total_time += time_end.(cl.CL_ulong) - time_start.(cl.CL_ulong) if PROFILE_READ == 0 { /* Unmap the buffer */ err = cl.CLEnqueueUnmapMemObject(queue, data_buffer, mapped_memory, 0, nil, nil) if err < 0 { println("Couldn't unmap the buffer") return } } } if PROFILE_READ == 1 { fmt.Printf("Average read time: %v\n", total_time/NUM_ITERATIONS) } else { fmt.Printf("Average map time: %v\n", total_time/NUM_ITERATIONS) } /* Deallocate resources */ cl.CLReleaseEvent(prof_event) cl.CLReleaseMemObject(data_buffer) cl.CLReleaseKernel(kernel) cl.CLReleaseCommandQueue(queue) cl.CLReleaseProgram(*program) cl.CLReleaseContext(context) }
func main() { /* OpenCL data structures */ var device []cl.CL_device_id var context cl.CL_context var queue cl.CL_command_queue var program *cl.CL_program var kernel cl.CL_kernel var err cl.CL_int /* Data and buffers */ var r_coords = [4]float32{2, 1, 3, 4} var angles = [4]float32{3 * M_PI / 8, 3 * M_PI / 4, 4 * M_PI / 3, 11 * M_PI / 6} var x_coords, y_coords [4]float32 var r_coords_buffer, angles_buffer, x_coords_buffer, y_coords_buffer cl.CL_mem /* Create a device and context */ device = utils.Create_device() context = cl.CLCreateContext(nil, 1, device[:], nil, nil, &err) if err < 0 { println("Couldn't create a context") return } /* Create a kernel */ program = utils.Build_program(context, device[:], PROGRAM_FILE, nil) kernel = cl.CLCreateKernel(*program, KERNEL_FUNC, &err) if err < 0 { println("Couldn't create a kernel") return } /* Create a write-only buffer to hold the output data */ r_coords_buffer = cl.CLCreateBuffer(context, cl.CL_MEM_READ_ONLY|cl.CL_MEM_COPY_HOST_PTR, cl.CL_size_t(unsafe.Sizeof(r_coords)), unsafe.Pointer(&r_coords[0]), &err) if err < 0 { println("Couldn't create a buffer") return } angles_buffer = cl.CLCreateBuffer(context, cl.CL_MEM_READ_ONLY|cl.CL_MEM_COPY_HOST_PTR, cl.CL_size_t(unsafe.Sizeof(angles)), unsafe.Pointer(&angles[0]), &err) x_coords_buffer = cl.CLCreateBuffer(context, cl.CL_MEM_READ_WRITE, cl.CL_size_t(unsafe.Sizeof(x_coords)), nil, &err) y_coords_buffer = cl.CLCreateBuffer(context, cl.CL_MEM_READ_WRITE, cl.CL_size_t(unsafe.Sizeof(y_coords)), nil, &err) /* Create kernel argument */ err = cl.CLSetKernelArg(kernel, 0, cl.CL_size_t(unsafe.Sizeof(r_coords_buffer)), unsafe.Pointer(&r_coords_buffer)) if err < 0 { println("Couldn't set a kernel argument") return } cl.CLSetKernelArg(kernel, 1, cl.CL_size_t(unsafe.Sizeof(angles_buffer)), unsafe.Pointer(&angles_buffer)) cl.CLSetKernelArg(kernel, 2, cl.CL_size_t(unsafe.Sizeof(x_coords_buffer)), unsafe.Pointer(&x_coords_buffer)) cl.CLSetKernelArg(kernel, 3, cl.CL_size_t(unsafe.Sizeof(y_coords_buffer)), unsafe.Pointer(&y_coords_buffer)) /* Create a command queue */ queue = cl.CLCreateCommandQueue(context, device[0], 0, &err) if err < 0 { println("Couldn't create a command queue") return } /* Enqueue kernel */ err = cl.CLEnqueueTask(queue, kernel, 0, nil, nil) if err < 0 { println("Couldn't enqueue the kernel") return } /* Read and print the result */ err = cl.CLEnqueueReadBuffer(queue, x_coords_buffer, cl.CL_TRUE, 0, cl.CL_size_t(unsafe.Sizeof(x_coords)), unsafe.Pointer(&x_coords), 0, nil, nil) if err < 0 { println("Couldn't read the buffer") return } cl.CLEnqueueReadBuffer(queue, y_coords_buffer, cl.CL_TRUE, 0, cl.CL_size_t(unsafe.Sizeof(y_coords)), unsafe.Pointer(&y_coords), 0, nil, nil) /* Display the results */ for i := 0; i < 4; i++ { fmt.Printf("(%6.3f, %6.3f)\n", x_coords[i], y_coords[i]) } /* Deallocate resources */ cl.CLReleaseMemObject(r_coords_buffer) cl.CLReleaseMemObject(angles_buffer) cl.CLReleaseMemObject(x_coords_buffer) cl.CLReleaseMemObject(y_coords_buffer) cl.CLReleaseKernel(kernel) cl.CLReleaseCommandQueue(queue) cl.CLReleaseProgram(*program) cl.CLReleaseContext(context) }