示例#1
0
文件: const.go 项目: glycerine/llgo
// zeroConst returns a new "zero" constant of the specified type,
// which must not be an array or struct type: the zero values of
// aggregates are well-defined but cannot be represented by Const.
//
func zeroConst(t types.Type) *Const {
	switch t := t.(type) {
	case *types.Basic:
		switch {
		case t.Info()&types.IsBoolean != 0:
			return NewConst(exact.MakeBool(false), t)
		case t.Info()&types.IsNumeric != 0:
			return NewConst(exact.MakeInt64(0), t)
		case t.Info()&types.IsString != 0:
			return NewConst(exact.MakeString(""), t)
		case t.Kind() == types.UnsafePointer:
			fallthrough
		case t.Kind() == types.UntypedNil:
			return nilConst(t)
		default:
			panic(fmt.Sprint("zeroConst for unexpected type:", t))
		}
	case *types.Pointer, *types.Slice, *types.Interface, *types.Chan, *types.Map, *types.Signature:
		return nilConst(t)
	case *types.Named:
		return NewConst(zeroConst(t.Underlying()).Value, t)
	case *types.Array, *types.Struct, *types.Tuple:
		panic(fmt.Sprint("zeroConst applied to aggregate:", t))
	}
	panic(fmt.Sprint("zeroConst: unexpected ", t))
}
示例#2
0
文件: import.go 项目: glycerine/llgo
func (p *importer) value() exact.Value {
	switch kind := exact.Kind(p.int()); kind {
	case falseTag:
		return exact.MakeBool(false)
	case trueTag:
		return exact.MakeBool(true)
	case int64Tag:
		return exact.MakeInt64(p.int64())
	case floatTag:
		return p.float()
	case fractionTag:
		return p.fraction()
	case complexTag:
		re := p.fraction()
		im := p.fraction()
		return exact.BinaryOp(re, token.ADD, exact.MakeImag(im))
	case stringTag:
		return exact.MakeString(p.string())
	default:
		panic(fmt.Sprintf("unexpected value kind %d", kind))
	}
}
示例#3
0
文件: expr.go 项目: glycerine/llgo
func (check *Checker) comparison(x, y *operand, op token.Token) {
	// spec: "In any comparison, the first operand must be assignable
	// to the type of the second operand, or vice versa."
	err := ""
	if x.assignableTo(check.conf, y.typ) || y.assignableTo(check.conf, x.typ) {
		defined := false
		switch op {
		case token.EQL, token.NEQ:
			// spec: "The equality operators == and != apply to operands that are comparable."
			defined = Comparable(x.typ) || x.isNil() && hasNil(y.typ) || y.isNil() && hasNil(x.typ)
		case token.LSS, token.LEQ, token.GTR, token.GEQ:
			// spec: The ordering operators <, <=, >, and >= apply to operands that are ordered."
			defined = isOrdered(x.typ)
		default:
			unreachable()
		}
		if !defined {
			typ := x.typ
			if x.isNil() {
				typ = y.typ
			}
			err = check.sprintf("operator %s not defined for %s", op, typ)
		}
	} else {
		err = check.sprintf("mismatched types %s and %s", x.typ, y.typ)
	}

	if err != "" {
		check.errorf(x.pos(), "cannot compare %s %s %s (%s)", x.expr, op, y.expr, err)
		x.mode = invalid
		return
	}

	if x.mode == constant && y.mode == constant {
		x.val = exact.MakeBool(exact.Compare(x.val, op, y.val))
		// The operands are never materialized; no need to update
		// their types.
	} else {
		x.mode = value
		// The operands have now their final types, which at run-
		// time will be materialized. Update the expression trees.
		// If the current types are untyped, the materialized type
		// is the respective default type.
		check.updateExprType(x.expr, defaultType(x.typ), true)
		check.updateExprType(y.expr, defaultType(y.typ), true)
	}

	// spec: "Comparison operators compare two operands and yield
	//        an untyped boolean value."
	x.typ = Typ[UntypedBool]
}
示例#4
0
文件: stmt.go 项目: glycerine/llgo
// stmt typechecks statement s.
func (check *Checker) stmt(ctxt stmtContext, s ast.Stmt) {
	// statements cannot use iota in general
	// (constant declarations set it explicitly)
	assert(check.iota == nil)

	// statements must end with the same top scope as they started with
	if debug {
		defer func(scope *Scope) {
			// don't check if code is panicking
			if p := recover(); p != nil {
				panic(p)
			}
			assert(scope == check.scope)
		}(check.scope)
	}

	inner := ctxt &^ fallthroughOk
	switch s := s.(type) {
	case *ast.BadStmt, *ast.EmptyStmt:
		// ignore

	case *ast.DeclStmt:
		check.declStmt(s.Decl)

	case *ast.LabeledStmt:
		check.hasLabel = true
		check.stmt(ctxt, s.Stmt)

	case *ast.ExprStmt:
		// spec: "With the exception of specific built-in functions,
		// function and method calls and receive operations can appear
		// in statement context. Such statements may be parenthesized."
		var x operand
		kind := check.rawExpr(&x, s.X, nil)
		var msg string
		switch x.mode {
		default:
			if kind == statement {
				return
			}
			msg = "is not used"
		case builtin:
			msg = "must be called"
		case typexpr:
			msg = "is not an expression"
		}
		check.errorf(x.pos(), "%s %s", &x, msg)

	case *ast.SendStmt:
		var ch, x operand
		check.expr(&ch, s.Chan)
		check.expr(&x, s.Value)
		if ch.mode == invalid || x.mode == invalid {
			return
		}
		if tch, ok := ch.typ.Underlying().(*Chan); !ok || tch.dir == RecvOnly || !check.assignment(&x, tch.elem) {
			if x.mode != invalid {
				check.invalidOp(ch.pos(), "cannot send %s to channel %s", &x, &ch)
			}
		}

	case *ast.IncDecStmt:
		var op token.Token
		switch s.Tok {
		case token.INC:
			op = token.ADD
		case token.DEC:
			op = token.SUB
		default:
			check.invalidAST(s.TokPos, "unknown inc/dec operation %s", s.Tok)
			return
		}
		var x operand
		Y := &ast.BasicLit{ValuePos: s.X.Pos(), Kind: token.INT, Value: "1"} // use x's position
		check.binary(&x, s.X, Y, op)
		if x.mode == invalid {
			return
		}
		check.assignVar(s.X, &x)

	case *ast.AssignStmt:
		switch s.Tok {
		case token.ASSIGN, token.DEFINE:
			if len(s.Lhs) == 0 {
				check.invalidAST(s.Pos(), "missing lhs in assignment")
				return
			}
			if s.Tok == token.DEFINE {
				check.shortVarDecl(s.TokPos, s.Lhs, s.Rhs)
			} else {
				// regular assignment
				check.assignVars(s.Lhs, s.Rhs)
			}

		default:
			// assignment operations
			if len(s.Lhs) != 1 || len(s.Rhs) != 1 {
				check.errorf(s.TokPos, "assignment operation %s requires single-valued expressions", s.Tok)
				return
			}
			op := assignOp(s.Tok)
			if op == token.ILLEGAL {
				check.invalidAST(s.TokPos, "unknown assignment operation %s", s.Tok)
				return
			}
			var x operand
			check.binary(&x, s.Lhs[0], s.Rhs[0], op)
			if x.mode == invalid {
				return
			}
			check.assignVar(s.Lhs[0], &x)
		}

	case *ast.GoStmt:
		check.suspendedCall("go", s.Call)

	case *ast.DeferStmt:
		check.suspendedCall("defer", s.Call)

	case *ast.ReturnStmt:
		res := check.sig.results
		if res.Len() > 0 {
			// function returns results
			// (if one, say the first, result parameter is named, all of them are named)
			if len(s.Results) == 0 && res.vars[0].name != "" {
				// spec: "Implementation restriction: A compiler may disallow an empty expression
				// list in a "return" statement if a different entity (constant, type, or variable)
				// with the same name as a result parameter is in scope at the place of the return."
				for _, obj := range res.vars {
					if _, alt := check.scope.LookupParent(obj.name); alt != nil && alt != obj {
						check.errorf(s.Pos(), "result parameter %s not in scope at return", obj.name)
						check.errorf(alt.Pos(), "\tinner declaration of %s", obj)
						// ok to continue
					}
				}
			} else {
				// return has results or result parameters are unnamed
				check.initVars(res.vars, s.Results, s.Return)
			}
		} else if len(s.Results) > 0 {
			check.error(s.Results[0].Pos(), "no result values expected")
			check.use(s.Results...)
		}

	case *ast.BranchStmt:
		if s.Label != nil {
			check.hasLabel = true
			return // checked in 2nd pass (check.labels)
		}
		switch s.Tok {
		case token.BREAK:
			if ctxt&breakOk == 0 {
				check.error(s.Pos(), "break not in for, switch, or select statement")
			}
		case token.CONTINUE:
			if ctxt&continueOk == 0 {
				check.error(s.Pos(), "continue not in for statement")
			}
		case token.FALLTHROUGH:
			if ctxt&fallthroughOk == 0 {
				check.error(s.Pos(), "fallthrough statement out of place")
			}
		default:
			check.invalidAST(s.Pos(), "branch statement: %s", s.Tok)
		}

	case *ast.BlockStmt:
		check.openScope(s, "block")
		defer check.closeScope()

		check.stmtList(inner, s.List)

	case *ast.IfStmt:
		check.openScope(s, "if")
		defer check.closeScope()

		check.simpleStmt(s.Init)
		var x operand
		check.expr(&x, s.Cond)
		if x.mode != invalid && !isBoolean(x.typ) {
			check.error(s.Cond.Pos(), "non-boolean condition in if statement")
		}
		check.stmt(inner, s.Body)
		if s.Else != nil {
			check.stmt(inner, s.Else)
		}

	case *ast.SwitchStmt:
		inner |= breakOk
		check.openScope(s, "switch")
		defer check.closeScope()

		check.simpleStmt(s.Init)
		var x operand
		if s.Tag != nil {
			check.expr(&x, s.Tag)
		} else {
			// spec: "A missing switch expression is
			// equivalent to the boolean value true."
			x.mode = constant
			x.typ = Typ[Bool]
			x.val = exact.MakeBool(true)
			x.expr = &ast.Ident{NamePos: s.Body.Lbrace, Name: "true"}
		}

		check.multipleDefaults(s.Body.List)

		for i, c := range s.Body.List {
			clause, _ := c.(*ast.CaseClause)
			if clause == nil {
				check.invalidAST(c.Pos(), "incorrect expression switch case")
				continue
			}
			if x.mode != invalid {
				check.caseValues(x, clause.List)
			}
			check.openScope(clause, "case")
			inner := inner
			if i+1 < len(s.Body.List) {
				inner |= fallthroughOk
			}
			check.stmtList(inner, clause.Body)
			check.closeScope()
		}

	case *ast.TypeSwitchStmt:
		inner |= breakOk
		check.openScope(s, "type switch")
		defer check.closeScope()

		check.simpleStmt(s.Init)

		// A type switch guard must be of the form:
		//
		//     TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
		//
		// The parser is checking syntactic correctness;
		// remaining syntactic errors are considered AST errors here.
		// TODO(gri) better factoring of error handling (invalid ASTs)
		//
		var lhs *ast.Ident // lhs identifier or nil
		var rhs ast.Expr
		switch guard := s.Assign.(type) {
		case *ast.ExprStmt:
			rhs = guard.X
		case *ast.AssignStmt:
			if len(guard.Lhs) != 1 || guard.Tok != token.DEFINE || len(guard.Rhs) != 1 {
				check.invalidAST(s.Pos(), "incorrect form of type switch guard")
				return
			}

			lhs, _ = guard.Lhs[0].(*ast.Ident)
			if lhs == nil {
				check.invalidAST(s.Pos(), "incorrect form of type switch guard")
				return
			}

			if lhs.Name == "_" {
				// _ := x.(type) is an invalid short variable declaration
				check.softErrorf(lhs.Pos(), "no new variable on left side of :=")
				lhs = nil // avoid declared but not used error below
			} else {
				check.recordDef(lhs, nil) // lhs variable is implicitly declared in each cause clause
			}

			rhs = guard.Rhs[0]

		default:
			check.invalidAST(s.Pos(), "incorrect form of type switch guard")
			return
		}

		// rhs must be of the form: expr.(type) and expr must be an interface
		expr, _ := rhs.(*ast.TypeAssertExpr)
		if expr == nil || expr.Type != nil {
			check.invalidAST(s.Pos(), "incorrect form of type switch guard")
			return
		}
		var x operand
		check.expr(&x, expr.X)
		if x.mode == invalid {
			return
		}
		xtyp, _ := x.typ.Underlying().(*Interface)
		if xtyp == nil {
			check.errorf(x.pos(), "%s is not an interface", &x)
			return
		}

		check.multipleDefaults(s.Body.List)

		var lhsVars []*Var               // list of implicitly declared lhs variables
		seen := make(map[Type]token.Pos) // map of seen types to positions
		for _, s := range s.Body.List {
			clause, _ := s.(*ast.CaseClause)
			if clause == nil {
				check.invalidAST(s.Pos(), "incorrect type switch case")
				continue
			}
			// Check each type in this type switch case.
			T := check.caseTypes(&x, xtyp, clause.List, seen)
			check.openScope(clause, "case")
			// If lhs exists, declare a corresponding variable in the case-local scope.
			if lhs != nil {
				// spec: "The TypeSwitchGuard may include a short variable declaration.
				// When that form is used, the variable is declared at the beginning of
				// the implicit block in each clause. In clauses with a case listing
				// exactly one type, the variable has that type; otherwise, the variable
				// has the type of the expression in the TypeSwitchGuard."
				if len(clause.List) != 1 || T == nil {
					T = x.typ
				}
				obj := NewVar(lhs.Pos(), check.pkg, lhs.Name, T)
				check.declare(check.scope, nil, obj)
				check.recordImplicit(clause, obj)
				// For the "declared but not used" error, all lhs variables act as
				// one; i.e., if any one of them is 'used', all of them are 'used'.
				// Collect them for later analysis.
				lhsVars = append(lhsVars, obj)
			}
			check.stmtList(inner, clause.Body)
			check.closeScope()
		}

		// If lhs exists, we must have at least one lhs variable that was used.
		if lhs != nil {
			var used bool
			for _, v := range lhsVars {
				if v.used {
					used = true
				}
				v.used = true // avoid usage error when checking entire function
			}
			if !used {
				check.softErrorf(lhs.Pos(), "%s declared but not used", lhs.Name)
			}
		}

	case *ast.SelectStmt:
		inner |= breakOk

		check.multipleDefaults(s.Body.List)

		for _, s := range s.Body.List {
			clause, _ := s.(*ast.CommClause)
			if clause == nil {
				continue // error reported before
			}

			// clause.Comm must be a SendStmt, RecvStmt, or default case
			valid := false
			var rhs ast.Expr // rhs of RecvStmt, or nil
			switch s := clause.Comm.(type) {
			case nil, *ast.SendStmt:
				valid = true
			case *ast.AssignStmt:
				if len(s.Rhs) == 1 {
					rhs = s.Rhs[0]
				}
			case *ast.ExprStmt:
				rhs = s.X
			}

			// if present, rhs must be a receive operation
			if rhs != nil {
				if x, _ := unparen(rhs).(*ast.UnaryExpr); x != nil && x.Op == token.ARROW {
					valid = true
				}
			}

			if !valid {
				check.error(clause.Comm.Pos(), "select case must be send or receive (possibly with assignment)")
				continue
			}

			check.openScope(s, "case")
			if clause.Comm != nil {
				check.stmt(inner, clause.Comm)
			}
			check.stmtList(inner, clause.Body)
			check.closeScope()
		}

	case *ast.ForStmt:
		inner |= breakOk | continueOk
		check.openScope(s, "for")
		defer check.closeScope()

		check.simpleStmt(s.Init)
		if s.Cond != nil {
			var x operand
			check.expr(&x, s.Cond)
			if x.mode != invalid && !isBoolean(x.typ) {
				check.error(s.Cond.Pos(), "non-boolean condition in for statement")
			}
		}
		check.simpleStmt(s.Post)
		// spec: "The init statement may be a short variable
		// declaration, but the post statement must not."
		if s, _ := s.Post.(*ast.AssignStmt); s != nil && s.Tok == token.DEFINE {
			check.softErrorf(s.Pos(), "cannot declare in post statement")
			check.use(s.Lhs...) // avoid follow-up errors
		}
		check.stmt(inner, s.Body)

	case *ast.RangeStmt:
		inner |= breakOk | continueOk
		check.openScope(s, "for")
		defer check.closeScope()

		// check expression to iterate over
		var x operand
		check.expr(&x, s.X)

		// determine key/value types
		var key, val Type
		if x.mode != invalid {
			switch typ := x.typ.Underlying().(type) {
			case *Basic:
				if isString(typ) {
					key = Typ[Int]
					val = UniverseRune // use 'rune' name
				}
			case *Array:
				key = Typ[Int]
				val = typ.elem
			case *Slice:
				key = Typ[Int]
				val = typ.elem
			case *Pointer:
				if typ, _ := typ.base.Underlying().(*Array); typ != nil {
					key = Typ[Int]
					val = typ.elem
				}
			case *Map:
				key = typ.key
				val = typ.elem
			case *Chan:
				key = typ.elem
				val = Typ[Invalid]
				if typ.dir == SendOnly {
					check.errorf(x.pos(), "cannot range over send-only channel %s", &x)
					// ok to continue
				}
				if s.Value != nil {
					check.errorf(s.Value.Pos(), "iteration over %s permits only one iteration variable", &x)
					// ok to continue
				}
			}
		}

		if key == nil {
			check.errorf(x.pos(), "cannot range over %s", &x)
			// ok to continue
		}

		// check assignment to/declaration of iteration variables
		// (irregular assignment, cannot easily map to existing assignment checks)

		// lhs expressions and initialization value (rhs) types
		lhs := [2]ast.Expr{s.Key, s.Value}
		rhs := [2]Type{key, val} // key, val may be nil

		if s.Tok == token.DEFINE {
			// short variable declaration; variable scope starts after the range clause
			// (the for loop opens a new scope, so variables on the lhs never redeclare
			// previously declared variables)
			var vars []*Var
			for i, lhs := range lhs {
				if lhs == nil {
					continue
				}

				// determine lhs variable
				var obj *Var
				if ident, _ := lhs.(*ast.Ident); ident != nil {
					// declare new variable
					name := ident.Name
					obj = NewVar(ident.Pos(), check.pkg, name, nil)
					check.recordDef(ident, obj)
					// _ variables don't count as new variables
					if name != "_" {
						vars = append(vars, obj)
					}
				} else {
					check.errorf(lhs.Pos(), "cannot declare %s", lhs)
					obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable
				}

				// initialize lhs variable
				if typ := rhs[i]; typ != nil {
					x.mode = value
					x.expr = lhs // we don't have a better rhs expression to use here
					x.typ = typ
					check.initVar(obj, &x, false)
				} else {
					obj.typ = Typ[Invalid]
					obj.used = true // don't complain about unused variable
				}
			}

			// declare variables
			if len(vars) > 0 {
				for _, obj := range vars {
					check.declare(check.scope, nil /* recordDef already called */, obj)
				}
			} else {
				check.error(s.TokPos, "no new variables on left side of :=")
			}
		} else {
			// ordinary assignment
			for i, lhs := range lhs {
				if lhs == nil {
					continue
				}
				if typ := rhs[i]; typ != nil {
					x.mode = value
					x.expr = lhs // we don't have a better rhs expression to use here
					x.typ = typ
					check.assignVar(lhs, &x)
				}
			}
		}

		check.stmt(inner, s.Body)

	default:
		check.error(s.Pos(), "invalid statement")
	}
}
示例#5
0
// ConstDecl   = "const" ExportedName [ Type ] "=" Literal .
// Literal     = bool_lit | int_lit | float_lit | complex_lit | rune_lit | string_lit .
// bool_lit    = "true" | "false" .
// complex_lit = "(" float_lit "+" float_lit "i" ")" .
// rune_lit    = "(" int_lit "+" int_lit ")" .
// string_lit  = `"` { unicode_char } `"` .
//
func (p *parser) parseConstDecl() {
	p.expectKeyword("const")
	pkg, name := p.parseExportedName()

	var typ0 types.Type
	if p.tok != '=' {
		typ0 = p.parseType()
	}

	p.expect('=')
	var typ types.Type
	var val exact.Value
	switch p.tok {
	case scanner.Ident:
		// bool_lit
		if p.lit != "true" && p.lit != "false" {
			p.error("expected true or false")
		}
		typ = types.Typ[types.UntypedBool]
		val = exact.MakeBool(p.lit == "true")
		p.next()

	case '-', scanner.Int:
		// int_lit
		typ, val = p.parseNumber()

	case '(':
		// complex_lit or rune_lit
		p.next()
		if p.tok == scanner.Char {
			p.next()
			p.expect('+')
			typ = types.Typ[types.UntypedRune]
			_, val = p.parseNumber()
			p.expect(')')
			break
		}
		_, re := p.parseNumber()
		p.expect('+')
		_, im := p.parseNumber()
		p.expectKeyword("i")
		p.expect(')')
		typ = types.Typ[types.UntypedComplex]
		val = exact.BinaryOp(re, token.ADD, exact.MakeImag(im))

	case scanner.Char:
		// rune_lit
		typ = types.Typ[types.UntypedRune]
		val = exact.MakeFromLiteral(p.lit, token.CHAR)
		p.next()

	case scanner.String:
		// string_lit
		typ = types.Typ[types.UntypedString]
		val = exact.MakeFromLiteral(p.lit, token.STRING)
		p.next()

	default:
		p.errorf("expected literal got %s", scanner.TokenString(p.tok))
	}

	if typ0 == nil {
		typ0 = typ
	}

	pkg.Scope().Insert(types.NewConst(token.NoPos, pkg, name, typ0, val))
}
示例#6
0
文件: parser.go 项目: glycerine/llgo
// ConstValue     = string | "false" | "true" | ["-"] (int ["'"] | FloatOrComplex) .
// FloatOrComplex = float ["i" | ("+"|"-") float "i"] .
func (p *parser) parseConstValue() (val exact.Value, typ types.Type) {
	switch p.tok {
	case scanner.String:
		str := p.parseString()
		val = exact.MakeString(str)
		typ = types.Typ[types.UntypedString]
		return

	case scanner.Ident:
		b := false
		switch p.lit {
		case "false":
		case "true":
			b = true

		default:
			p.errorf("expected const value, got %s (%q)", scanner.TokenString(p.tok), p.lit)
		}

		p.next()
		val = exact.MakeBool(b)
		typ = types.Typ[types.UntypedBool]
		return
	}

	sign := ""
	if p.tok == '-' {
		p.next()
		sign = "-"
	}

	switch p.tok {
	case scanner.Int:
		val = exact.MakeFromLiteral(sign+p.lit, token.INT)
		if val == nil {
			p.error("could not parse integer literal")
		}

		p.next()
		if p.tok == '\'' {
			p.next()
			typ = types.Typ[types.UntypedRune]
		} else {
			typ = types.Typ[types.UntypedInt]
		}

	case scanner.Float:
		re := sign + p.lit
		p.next()

		var im string
		switch p.tok {
		case '+':
			p.next()
			im = p.expect(scanner.Float)

		case '-':
			p.next()
			im = "-" + p.expect(scanner.Float)

		case scanner.Ident:
			// re is in fact the imaginary component. Expect "i" below.
			im = re
			re = "0"

		default:
			val = exact.MakeFromLiteral(re, token.FLOAT)
			if val == nil {
				p.error("could not parse float literal")
			}
			typ = types.Typ[types.UntypedFloat]
			return
		}

		p.expectKeyword("i")
		reval := exact.MakeFromLiteral(re, token.FLOAT)
		if reval == nil {
			p.error("could not parse real component of complex literal")
		}
		imval := exact.MakeFromLiteral(im+"i", token.IMAG)
		if imval == nil {
			p.error("could not parse imag component of complex literal")
		}
		val = exact.BinaryOp(reval, token.ADD, imval)
		typ = types.Typ[types.UntypedComplex]

	default:
		p.errorf("expected const value, got %s (%q)", scanner.TokenString(p.tok), p.lit)
	}

	return
}
示例#7
0
	// Error has a nil package in its qualified name since it is in no package
	res := NewVar(token.NoPos, nil, "", Typ[String])
	sig := &Signature{results: NewTuple(res)}
	err := NewFunc(token.NoPos, nil, "Error", sig)
	typ := &Named{underlying: NewInterface([]*Func{err}, nil).Complete()}
	sig.recv = NewVar(token.NoPos, nil, "", typ)
	def(NewTypeName(token.NoPos, nil, "error", typ))
}

var predeclaredConsts = [...]struct {
	name string
	kind BasicKind
	val  exact.Value
}{
	{"true", UntypedBool, exact.MakeBool(true)},
	{"false", UntypedBool, exact.MakeBool(false)},
	{"iota", UntypedInt, exact.MakeInt64(0)},
}

func defPredeclaredConsts() {
	for _, c := range predeclaredConsts {
		def(NewConst(token.NoPos, nil, c.name, Typ[c.kind], c.val))
	}
}

func defPredeclaredNil() {
	def(&Nil{object{name: "nil", typ: Typ[UntypedNil]}})
}

// A builtinId is the id of a builtin function.