func (solver *LbfgsbSolver) Solve(problem *optimization.Problem, x optimization.Point) (optimization.Point, float64) { optimizer := new(lbfgsb.Lbfgsb).SetFTolerance(1e-10).SetGTolerance(1e-10) point := optimization.VectorToDense(x) optimizer.SetLogger(func(info *lbfgsb.OptimizationIterationInformation) { if (info.Iteration-1)%10 == 0 { solver.Log(1000, info.Header()) } solver.Log(1000, info.String()) }) objective := lbfgsb.GeneralObjectiveFunction{ Function: func(p []float64) float64 { y := problem.Value(optimization.VectorDensePoint(p)) return y }, Gradient: func(p []float64) []float64 { g := problem.Gradient(optimization.VectorDensePoint(p)) return optimization.VectorToDense(g) }, } xfg, status := optimizer.Minimize(objective, point) stats := optimizer.OptimizationStatistics() log.Printf("stats: iters: %v; F evals: %v; G evals: %v", stats.Iterations, stats.FunctionEvaluations, stats.GradientEvaluations) log.Printf("status: %v", status) x = optimization.VectorDensePoint(xfg.X) if xfg.F != problem.Value(x) { log.Printf("error of value, %v != %v", xfg.F, problem.Value(x)) } return x, xfg.F }
func OptimizeWeights(init_weights []float64, all_labels [][]float64) []float64 { log.Printf("optimize ...\n") var solver optimization.Solver if *solver_name == "gradient" { solver = &optimization.GradientDescentSolver{} } if *solver_name == "conjugate" { solver = &optimization.GradientDescentSolver{} } if solver == nil { solver = &optimization.LmBFGSSolver{} } solver.Init(map[string]interface{}{ "MaxIter": *max_iter, "LogFunc": func(level int, message string) { log.Printf("solver[level=%v]:%v", level, message) }, }) problem := &optimization.Problem{ ValueAndGradientFunc: func(p optimization.Point) (float64, optimization.Point) { return opt_func_grad(p, all_labels) }, } m, v := solver.Solve(problem, optimization.VectorDensePoint(init_weights)) log.Printf("solver min value %v #f=%v #g=%v at %v\n", v, problem.NumValue, problem.NumGradient, m.String()) weights := optimization.VectorToDense(m) normalize(weights) return weights }
func opt_func(a optimization.Point) float64 { value := 0.0 vs := optimization.VectorToDense(a) for i := 0; i < len(vs)-1; i++ { value += square(1.0-a.Factor*vs[i]) + 100.0*square(a.Factor*vs[i+1]-square(a.Factor*vs[i])) } return value }
func opt_grad(A []float64, b []float64, v optimization.Point) optimization.Point { r := mv(A, optimization.VectorToDense(v)) for i := 0; i < len(r); i++ { r[i] *= v.Factor r[i] -= b[i] } gd := mtv(A, r) g := optimization.VectorDensePoint(gd).Scale(2.0) // log.Printf("caled grad(%s) = %s\n", v.String(), g.String()) return g }
func opt_grad(a optimization.Point) optimization.Point { vs := optimization.VectorToDense(a) gradient := make([]float64, len(vs)) gradient[0] = -400.0*a.Factor*vs[0]*(a.Factor*vs[1]-square(a.Factor*vs[0])) - 2.0*(1.0-a.Factor*vs[0]) var i int for i = 1; i < len(vs)-1; i++ { gradient[i] = -400.0*a.Factor*vs[i]*(a.Factor*vs[i+1]-square(a.Factor*vs[i])) - 2.0*(1.0-101.0*a.Factor*vs[i]+100.0*square(a.Factor*vs[i-1])) } gradient[i] = 200.0 * (a.Factor*vs[i] - square(a.Factor*vs[i-1])) return optimization.VectorDensePoint(gradient) }
func opt_func(A []float64, b []float64, v optimization.Point) float64 { if len(A) != *row**col || len(b) != *row { log.Fatalf("invalid size row=%v col=%v len(A)=%v len(b)=%v", row, col, len(A), len(b)) } r := mv(A, optimization.VectorToDense(v)) s := 0.0 for i := 0; i < len(r); i++ { r[i] *= v.Factor r[i] -= b[i] s += square(r[i]) } // log.Printf("caled func(%s) = %f\n", v.String(), s) return s }
func opt_func_grad(p optimization.Point, all_labels [][]float64) (float64, optimization.Point) { weights := optimization.VectorToDense(p) grads := make([]float64, len(weights)) f := 0.0 if *lost == "exp" { // e(-y) for _, labels := range all_labels { if len(labels) != len(weights)+1 { log.Fatalf("# label(%v) != # weight(%v) + 1", len(labels), len(weights)) } s := 0.0 for j, w := range weights { s += w * labels[j+1] } y := s * labels[0] var emy float64 if y >= -100 { emy = math.Exp(-y) } else { emy = math.Exp(100) } f += emy for j, _ := range weights { grads[j] += -emy * labels[0] * labels[j+1] } } } else { for _, labels := range all_labels { if len(labels) != len(weights)+1 { log.Fatalf("# label(%v) != # weight(%v) + 1", len(labels), len(weights)) } s := 0.0 for j, w := range weights { s += w * labels[j+1] } y := s * labels[0] // log(1 + e(-y)) if y > 0 { emy := math.Exp(-y) f += math.Log(1 + emy) for j, _ := range weights { grads[j] += -labels[0] * emy / (1 + emy) * labels[j+1] } } else { ey := math.Exp(y) f += -y + math.Log(1+ey) for j, _ := range weights { grads[j] += -labels[0] / (ey + 1) * labels[j+1] } } } } for j, _ := range grads { grads[j] /= float64(len(all_labels)) } f /= float64(len(all_labels)) if *regular2 != 0.0 { s := 0.0 for j, w := range weights { s += w * w grads[j] += 2 * *regular2 * w } f += *regular2 * s } return f, optimization.VectorDensePoint(grads) }