Beispiel #1
0
func (b Base58) Base582Big() *big.Int {
	answer := new(big.Int)
	for i := 0; i < len(b); i++ {
		answer.Mul(answer, big.NewInt(58))                              //multiply current value by 58
		answer.Add(answer, big.NewInt(int64(revalp[string(b[i:i+1])]))) //add value of the current letter
	}
	return answer
}
Beispiel #2
0
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (curve *Curve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
	delta := new(big.Int).Mul(z, z)
	delta.Mod(delta, curve.P)
	gamma := new(big.Int).Mul(y, y)
	gamma.Mod(gamma, curve.P)
	alpha := new(big.Int).Sub(x, delta)
	if alpha.Sign() == -1 {
		alpha.Add(alpha, curve.P)
	}
	alpha2 := new(big.Int).Add(x, delta)
	alpha.Mul(alpha, alpha2)
	alpha2.Set(alpha)
	alpha.Lsh(alpha, 1)
	alpha.Add(alpha, alpha2)

	beta := alpha2.Mul(x, gamma)

	x3 := new(big.Int).Mul(alpha, alpha)
	beta8 := new(big.Int).Lsh(beta, 3)
	x3.Sub(x3, beta8)
	for x3.Sign() == -1 {
		x3.Add(x3, curve.P)
	}
	x3.Mod(x3, curve.P)

	z3 := new(big.Int).Add(y, z)
	z3.Mul(z3, z3)
	z3.Sub(z3, gamma)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Sub(z3, delta)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Mod(z3, curve.P)

	beta.Lsh(beta, 2)
	beta.Sub(beta, x3)
	if beta.Sign() == -1 {
		beta.Add(beta, curve.P)
	}
	y3 := alpha.Mul(alpha, beta)

	gamma.Mul(gamma, gamma)
	gamma.Lsh(gamma, 3)
	gamma.Mod(gamma, curve.P)

	y3.Sub(y3, gamma)
	if y3.Sign() == -1 {
		y3.Add(y3, curve.P)
	}
	y3.Mod(y3, curve.P)

	return x3, y3, z3
}
// IsOnBitCurve returns true if the given (x,y) lies on the BitCurve.
func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
	// y² = x³ + b
	y2 := new(big.Int).Mul(y, y) //y²
	y2.Mod(y2, BitCurve.P)       //y²%P

	x3 := new(big.Int).Mul(x, x) //x²
	x3.Mul(x3, x)                //x³

	x3.Add(x3, BitCurve.B) //x³+B
	x3.Mod(x3, BitCurve.P) //(x³+B)%P

	return x3.Cmp(y2) == 0
}
Beispiel #4
0
/**
 * Store the solution in the Calculator output lines.
 */
func (calc *Calculator) setSolutionLine() {
	var solution big.Int

	if calc.operator == '+' {
		solution.Add(&calc.operands[0], &calc.operands[1])
	} else if calc.operator == '-' {
		solution.Sub(&calc.operands[0], &calc.operands[1])
	} else {
		solution.Mul(&calc.operands[0], &calc.operands[1])
	}

	calc.lines[len(calc.lines)-1] = solution.String()
}
Beispiel #5
0
// modInverse returns ia, the inverse of a in the multiplicative group of prime
// order n. It requires that a be a member of the group (i.e. less than n).
func modInverse(a, n *big.Int) (ia *big.Int) {
	g := new(big.Int)
	x := new(big.Int)
	y := new(big.Int)
	big.GcdInt(g, x, y, a, n)
	if big.CmpInt(x, bigOne) < 0 {
		// 0 is not the multiplicative inverse of any element so, if x
		// < 1, then x is negative.
		x.Add(x, n)
	}

	return x
}
Beispiel #6
0
// parseBigInt treats the given bytes as a big-endian, signed integer and returns
// the result.
func parseBigInt(bytes []byte) *big.Int {
	ret := new(big.Int)
	if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
		// This is a negative number.
		notBytes := make([]byte, len(bytes))
		for i := range notBytes {
			notBytes[i] = ^bytes[i]
		}
		ret.SetBytes(notBytes)
		ret.Add(ret, bigOne)
		ret.Neg(ret)
		return ret
	}
	ret.SetBytes(bytes)
	return ret
}
Beispiel #7
0
// IsOnCurve returns true if the given (x,y) lies on the curve.
func (curve *Curve) IsOnCurve(x, y *big.Int) bool {
	// y² = x³ - 3x + b
	y2 := new(big.Int).Mul(y, y)
	y2.Mod(y2, curve.P)

	x3 := new(big.Int).Mul(x, x)
	x3.Mul(x3, x)

	threeX := new(big.Int).Lsh(x, 1)
	threeX.Add(threeX, x)

	x3.Sub(x3, threeX)
	x3.Add(x3, curve.B)
	x3.Mod(x3, curve.P)

	return x3.Cmp(y2) == 0
}
Beispiel #8
0
func (curve *Curve) double(p *Point) *Point {
	fmt.Printf("d")
	lambda_numerator := new(big.Int)
	lambda_denominator := new(big.Int)
	lambda := new(big.Int)
	lambda_numerator.Exp(p.X, BigTwo, curve.P)
	lambda_numerator.Mul(lambda_numerator, BigThree)
	lambda_numerator.Add(lambda_numerator, curve.A)
	lambda_denominator.Mul(BigTwo, p.Y)
	lambda_denominator, ok := modInverse(lambda_denominator, curve.P)
	if !ok {
		fmt.Printf("Its not OKAY\n")
		return nil
	}
	lambda.Mul(lambda_numerator, lambda_denominator)
	lambda = lambda.Mod(lambda, curve.P)

	p3 := NewPoint()

	temp := new(big.Int)
	temp2 := new(big.Int)
	//temp3 := new(big.Int)
	//temp4 := new(big.Int)
	//temp5 := new(big.Int)
	//temp6 := new(big.Int)
	p3.X.Sub(temp.Exp(lambda, BigTwo, curve.P), temp2.Mul(BigTwo, p.X))
	p3.X = p3.X.Mod(p3.X, curve.P)

	p3.Y.Sub(p.X, p3.X)
	p3.Y.Mul(p3.Y, lambda)
	p3.Y = p3.Y.Sub(p3.Y, p.Y)
	p3.Y = p3.Y.Mod(p3.Y, curve.P)
	if p3.X.Cmp(BigZero) == -1 { //if X is negative
		p3.X.Neg(p3.X)
		p3.X.Sub(curve.P, p3.X)
	}
	if p3.Y.Cmp(BigZero) == -1 { //if Y is negative
		p3.Y.Neg(p3.Y)
		p3.Y.Sub(curve.P, p3.Y)
	}
	return p3
}
Beispiel #9
0
// modInverse returns ia, the inverse of a in the multiplicative group of prime
// order n. It requires that a be a member of the group (i.e. less than n).
func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
	g := new(big.Int)
	x := new(big.Int)
	y := new(big.Int)
	big.GcdInt(g, x, y, a, n)
	if g.Cmp(bigOne) != 0 {
		// In this case, a and n aren't coprime and we cannot calculate
		// the inverse. This happens because the values of n are nearly
		// prime (being the product of two primes) rather than truly
		// prime.
		return
	}

	if x.Cmp(bigOne) < 0 {
		// 0 is not the multiplicative inverse of any element so, if x
		// < 1, then x is negative.
		x.Add(x, n)
	}

	return x, true
}
Beispiel #10
0
func binaryIntOp(x *big.Int, op token.Token, y *big.Int) interface{} {
	var z big.Int
	switch op {
	case token.ADD:
		return z.Add(x, y)
	case token.SUB:
		return z.Sub(x, y)
	case token.MUL:
		return z.Mul(x, y)
	case token.QUO:
		return z.Quo(x, y)
	case token.REM:
		return z.Rem(x, y)
	case token.AND:
		return z.And(x, y)
	case token.OR:
		return z.Or(x, y)
	case token.XOR:
		return z.Xor(x, y)
	case token.AND_NOT:
		return z.AndNot(x, y)
	case token.SHL:
		panic("unimplemented")
	case token.SHR:
		panic("unimplemented")
	case token.EQL:
		return x.Cmp(y) == 0
	case token.NEQ:
		return x.Cmp(y) != 0
	case token.LSS:
		return x.Cmp(y) < 0
	case token.LEQ:
		return x.Cmp(y) <= 0
	case token.GTR:
		return x.Cmp(y) > 0
	case token.GEQ:
		return x.Cmp(y) >= 0
	}
	panic("unreachable")
}
Beispiel #11
0
func number_add(x, y Obj) Obj {
	xfx := (uintptr(unsafe.Pointer(x)) & fixnum_mask) == fixnum_tag
	yfx := (uintptr(unsafe.Pointer(y)) & fixnum_mask) == fixnum_tag
	if xfx && yfx {
		i1 := uintptr(unsafe.Pointer(x))
		i2 := uintptr(unsafe.Pointer(y))
		r := (int(i1) >> fixnum_shift) + (int(i2) >> fixnum_shift)
		if r > fixnum_min && r < fixnum_max {
			return Make_fixnum(r)
		} else {
			return wrap(big.NewInt(int64(r)))
		}
	}

	if (!xfx && (uintptr(unsafe.Pointer(x))&heap_mask) != heap_tag) ||
		(!yfx && (uintptr(unsafe.Pointer(y))&heap_mask) != heap_tag) {
		panic("bad type")
	}

	if xfx {
		return number_add(y, x)
	}

	switch vx := (*x).(type) {
	case *big.Int:
		var z *big.Int = big.NewInt(0)
		if yfx {
			vy := big.NewInt(int64(fixnum_to_int(y)))
			return wrap(z.Add(vx, vy))
		}
		switch vy := (*y).(type) {
		case *big.Int:
			return simpBig(z.Add(vx, vy))
		default:
			panic("bad type")
		}
	}
	panic("bad type")
}
Beispiel #12
0
// GenerateParameters puts a random, valid set of DSA parameters into params.
// This function takes many seconds, even on fast machines.
func GenerateParameters(params *Parameters, rand io.Reader, sizes ParameterSizes) (err os.Error) {
	// This function doesn't follow FIPS 186-3 exactly in that it doesn't
	// use a verification seed to generate the primes. The verification
	// seed doesn't appear to be exported or used by other code and
	// omitting it makes the code cleaner.

	var L, N int
	switch sizes {
	case L1024N160:
		L = 1024
		N = 160
	case L2048N224:
		L = 2048
		N = 224
	case L2048N256:
		L = 2048
		N = 256
	case L3072N256:
		L = 3072
		N = 256
	default:
		return os.ErrorString("crypto/dsa: invalid ParameterSizes")
	}

	qBytes := make([]byte, N/8)
	pBytes := make([]byte, L/8)

	q := new(big.Int)
	p := new(big.Int)
	rem := new(big.Int)
	one := new(big.Int)
	one.SetInt64(1)

GeneratePrimes:
	for {
		_, err = io.ReadFull(rand, qBytes)
		if err != nil {
			return
		}

		qBytes[len(qBytes)-1] |= 1
		qBytes[0] |= 0x80
		q.SetBytes(qBytes)

		if !big.ProbablyPrime(q, numMRTests) {
			continue
		}

		for i := 0; i < 4*L; i++ {
			_, err = io.ReadFull(rand, pBytes)
			if err != nil {
				return
			}

			pBytes[len(pBytes)-1] |= 1
			pBytes[0] |= 0x80

			p.SetBytes(pBytes)
			rem.Mod(p, q)
			rem.Sub(rem, one)
			p.Sub(p, rem)
			if p.BitLen() < L {
				continue
			}

			if !big.ProbablyPrime(p, numMRTests) {
				continue
			}

			params.P = p
			params.Q = q
			break GeneratePrimes
		}
	}

	h := new(big.Int)
	h.SetInt64(2)
	g := new(big.Int)

	pm1 := new(big.Int).Sub(p, one)
	e := new(big.Int).Div(pm1, q)

	for {
		g.Exp(h, e, p)
		if g.Cmp(one) == 0 {
			h.Add(h, one)
			continue
		}

		params.G = g
		return
	}

	panic("unreachable")
}
Beispiel #13
0
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
// random source is given, RSA blinding is used.
func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.Error) {
	// TODO(agl): can we get away with reusing blinds?
	if c.Cmp(priv.N) > 0 {
		err = DecryptionError{}
		return
	}

	var ir *big.Int
	if random != nil {
		// Blinding enabled. Blinding involves multiplying c by r^e.
		// Then the decryption operation performs (m^e * r^e)^d mod n
		// which equals mr mod n. The factor of r can then be removed
		// by multiplying by the multiplicative inverse of r.

		var r *big.Int

		for {
			r, err = rand.Int(random, priv.N)
			if err != nil {
				return
			}
			if r.Cmp(bigZero) == 0 {
				r = bigOne
			}
			var ok bool
			ir, ok = modInverse(r, priv.N)
			if ok {
				break
			}
		}
		bigE := big.NewInt(int64(priv.E))
		rpowe := new(big.Int).Exp(r, bigE, priv.N)
		cCopy := new(big.Int).Set(c)
		cCopy.Mul(cCopy, rpowe)
		cCopy.Mod(cCopy, priv.N)
		c = cCopy
	}

	if priv.Precomputed.Dp == nil {
		m = new(big.Int).Exp(c, priv.D, priv.N)
	} else {
		// We have the precalculated values needed for the CRT.
		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
		m.Sub(m, m2)
		if m.Sign() < 0 {
			m.Add(m, priv.Primes[0])
		}
		m.Mul(m, priv.Precomputed.Qinv)
		m.Mod(m, priv.Primes[0])
		m.Mul(m, priv.Primes[1])
		m.Add(m, m2)

		for i, values := range priv.Precomputed.CRTValues {
			prime := priv.Primes[2+i]
			m2.Exp(c, values.Exp, prime)
			m2.Sub(m2, m)
			m2.Mul(m2, values.Coeff)
			m2.Mod(m2, prime)
			if m2.Sign() < 0 {
				m2.Add(m2, prime)
			}
			m2.Mul(m2, values.R)
			m.Add(m, m2)
		}
	}

	if ir != nil {
		// Unblind.
		m.Mul(m, ir)
		m.Mod(m, priv.N)
	}

	return
}
Beispiel #14
0
func main() {
	flag.Parse()                  // parsovani parametru prikazove radky
	rand.Seed(time.Nanoseconds()) // inicializace generatoru nahodnych cisel

	if *generateKeys {
		SaveKeys(GenerateKeys(*keyLength))
	}

	// rozdeleni souboru na vice mensich podle delky klice
	if *splitFile != "" {
		rights := 0600
		n, _ := ReadPublicKey()
		bytes := readFile(*splitFile)
		nl := len(n.Bytes()) - 1

		i := 0
		for ; i < len(bytes)/nl; i++ {
			writeToFile(partfile(i), bytes[i*nl:(i+1)*nl], rights)
		}
		if len(bytes[i*nl:]) > 0 { // pokud deleni nevychazi presne
			writeToFile(partfile(i), bytes[i*nl:], rights)
			i++
		}

		// informacni soubor
		writeToFile(*prefix+".info", strings.Bytes(fmt.Sprintf("%d", i)), rights)
	}

	// zasifruje/rozsifruje vsechny soubory verejnym klicem
	if *encrypFiles {
		n, e := ReadPublicKey()
		max := msgscount()

		for i := 0; i < max; i++ {
			file := readFile(partfile(i))
			bs := crypt(e, n, file)
			writeToFile(partfile(i), bs, 0600)
		}
	}

	// rozsifruje/zasifruje vsechny soubory soukromym klicem
	if *decrypFiles {
		p, q, d := ReadPrivateKey()
		pinv := new(big.Int).Mul(p, invMod(p, q)) // = p*(p^-1 mod q)
		qinv := new(big.Int).Mul(q, invMod(q, p)) // = q*(q^-1 mod p)

		n := new(big.Int).Mul(p, q)
		max := msgscount()

		for i := 0; i < max; i++ {
			file := readFile(partfile(i))

			// CINSKA VETA O ZBYTCICH
			bp := new(big.Int).SetBytes(crypt(d, p, file)) // decrypt mod p
			bq := new(big.Int).SetBytes(crypt(d, q, file)) // decrypt mod q

			// bs = bp * qinv + bq * binv (mod n)
			bs := new(big.Int).Mul(bp, qinv)
			bs.Add(bs, new(big.Int).Mul(bq, pinv))
			bs.Mod(bs, n)
			writeToFile(partfile(i), bs.Bytes(), 0600)
		}
	}

	// spojeni souboru do jednoho
	if *joinFile != "" {
		max := msgscount()
		var bs []byte

		for i := 0; i < max; i++ {
			file := readFile(partfile(i))
			bs = bytes.Add(bs, file)
		}

		writeToFile(*joinFile, bs, 0600)
	}
}
Beispiel #15
0
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
// random source is given, RSA blinding is used.
func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.Error) {
	// TODO(agl): can we get away with reusing blinds?
	if c.Cmp(priv.N) > 0 {
		err = DecryptionError{}
		return
	}

	var ir *big.Int
	if rand != nil {
		// Blinding enabled. Blinding involves multiplying c by r^e.
		// Then the decryption operation performs (m^e * r^e)^d mod n
		// which equals mr mod n. The factor of r can then be removed
		// by multipling by the multiplicative inverse of r.

		var r *big.Int

		for {
			r, err = randomNumber(rand, priv.N)
			if err != nil {
				return
			}
			if r.Cmp(bigZero) == 0 {
				r = bigOne
			}
			var ok bool
			ir, ok = modInverse(r, priv.N)
			if ok {
				break
			}
		}
		bigE := big.NewInt(int64(priv.E))
		rpowe := new(big.Int).Exp(r, bigE, priv.N)
		c.Mul(c, rpowe)
		c.Mod(c, priv.N)
	}

	priv.rwMutex.RLock()

	if priv.dP == nil && priv.P != nil {
		priv.rwMutex.RUnlock()
		priv.rwMutex.Lock()
		if priv.dP == nil && priv.P != nil {
			priv.precompute()
		}
		priv.rwMutex.Unlock()
		priv.rwMutex.RLock()
	}

	if priv.dP == nil {
		m = new(big.Int).Exp(c, priv.D, priv.N)
	} else {
		// We have the precalculated values needed for the CRT.
		m = new(big.Int).Exp(c, priv.dP, priv.P)
		m2 := new(big.Int).Exp(c, priv.dQ, priv.Q)
		m.Sub(m, m2)
		if m.Sign() < 0 {
			m.Add(m, priv.P)
		}
		m.Mul(m, priv.qInv)
		m.Mod(m, priv.P)
		m.Mul(m, priv.Q)
		m.Add(m, m2)

		if priv.dR != nil {
			// 3-prime CRT.
			m2.Exp(c, priv.dR, priv.R)
			m2.Sub(m2, m)
			m2.Mul(m2, priv.tr)
			m2.Mod(m2, priv.R)
			if m2.Sign() < 0 {
				m2.Add(m2, priv.R)
			}
			m2.Mul(m2, priv.pq)
			m.Add(m, m2)
		}
	}

	priv.rwMutex.RUnlock()

	if ir != nil {
		// Unblind.
		m.Mul(m, ir)
		m.Mod(m, priv.N)
	}

	return
}
Beispiel #16
0
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (curve *Curve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
	z1z1 := new(big.Int).Mul(z1, z1)
	z1z1.Mod(z1z1, curve.P)
	z2z2 := new(big.Int).Mul(z2, z2)
	z2z2.Mod(z2z2, curve.P)

	u1 := new(big.Int).Mul(x1, z2z2)
	u1.Mod(u1, curve.P)
	u2 := new(big.Int).Mul(x2, z1z1)
	u2.Mod(u2, curve.P)
	h := new(big.Int).Sub(u2, u1)
	if h.Sign() == -1 {
		h.Add(h, curve.P)
	}
	i := new(big.Int).Lsh(h, 1)
	i.Mul(i, i)
	j := new(big.Int).Mul(h, i)

	s1 := new(big.Int).Mul(y1, z2)
	s1.Mul(s1, z2z2)
	s1.Mod(s1, curve.P)
	s2 := new(big.Int).Mul(y2, z1)
	s2.Mul(s2, z1z1)
	s2.Mod(s2, curve.P)
	r := new(big.Int).Sub(s2, s1)
	if r.Sign() == -1 {
		r.Add(r, curve.P)
	}
	r.Lsh(r, 1)
	v := new(big.Int).Mul(u1, i)

	x3 := new(big.Int).Set(r)
	x3.Mul(x3, x3)
	x3.Sub(x3, j)
	x3.Sub(x3, v)
	x3.Sub(x3, v)
	x3.Mod(x3, curve.P)

	y3 := new(big.Int).Set(r)
	v.Sub(v, x3)
	y3.Mul(y3, v)
	s1.Mul(s1, j)
	s1.Lsh(s1, 1)
	y3.Sub(y3, s1)
	y3.Mod(y3, curve.P)

	z3 := new(big.Int).Add(z1, z2)
	z3.Mul(z3, z3)
	z3.Sub(z3, z1z1)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Sub(z3, z2z2)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Mul(z3, h)
	z3.Mod(z3, curve.P)

	return x3, y3, z3
}
func main() {
	// integer
	is := "1234"
	fmt.Println("original:   ", is)
	i, err := strconv.Atoi(is)
	if err != nil {
		fmt.Println(err)
		return
	}
	// assignment back to original variable shows result is the same type.
	is = strconv.Itoa(i + 1)
	fmt.Println("incremented:", is)

	// error checking worthwhile
	fmt.Println()
	_, err = strconv.Atoi(" 1234") // whitespace not allowed
	fmt.Println(err)
	_, err = strconv.Atoi("12345678901")
	fmt.Println(err)
	_, err = strconv.Atoi("_1234")
	fmt.Println(err)
	_, err = strconv.Atof64("12.D34")
	fmt.Println(err)

	// float
	fmt.Println()
	fs := "12.34"
	fmt.Println("original:   ", fs)
	f, err := strconv.Atof64(fs)
	if err != nil {
		fmt.Println(err)
		return
	}
	// various options on Ftoa64 produce different formats.  All are valid
	// input to Atof64, so result format does not have to match original
	// format.  (Matching original format would take a lot of code.)
	fs = strconv.Ftoa64(f+1, 'g', -1)
	fmt.Println("incremented:", fs)
	fs = strconv.Ftoa64(f+1, 'e', 4)
	fmt.Println("what format?", fs)

	// complex
	// strconv package doesn't handle complex types, but fmt does.
	// (fmt can be used on ints and floats too, but strconv is more efficient.)
	fmt.Println()
	cs := "(12+34i)"
	fmt.Println("original:   ", cs)
	var c complex128
	_, err = fmt.Sscan(cs, &c)
	if err != nil {
		fmt.Println(err)
		return
	}
	cs = fmt.Sprint(c + 1)
	fmt.Println("incremented:", cs)

	// big integers have their own functions
	fmt.Println()
	bs := "170141183460469231731687303715884105728"
	fmt.Println("original:   ", bs)
	var b, one big.Int
	_, ok := b.SetString(bs, 10)
	if !ok {
		fmt.Println("big.SetString fail")
		return
	}
	one.SetInt64(1)
	bs = b.Add(&b, &one).String()
	fmt.Println("incremented:", bs)
}