Beispiel #1
0
// newRPCTransaction returns a transaction that will serialize to the RPC representation.
func newRPCTransactionFromBlockIndex(b *types.Block, txIndex int) (*RPCTransaction, error) {
	if txIndex >= 0 && txIndex < len(b.Transactions()) {
		tx := b.Transactions()[txIndex]
		from, err := tx.From()
		if err != nil {
			return nil, err
		}

		return &RPCTransaction{
			BlockHash:        b.Hash(),
			BlockNumber:      rpc.NewHexNumber(b.Number()),
			From:             from,
			Gas:              rpc.NewHexNumber(tx.Gas()),
			GasPrice:         rpc.NewHexNumber(tx.GasPrice()),
			Hash:             tx.Hash(),
			Input:            fmt.Sprintf("0x%x", tx.Data()),
			Nonce:            rpc.NewHexNumber(tx.Nonce()),
			To:               tx.To(),
			TransactionIndex: rpc.NewHexNumber(txIndex),
			Value:            rpc.NewHexNumber(tx.Value()),
		}, nil
	}

	return nil, nil
}
Beispiel #2
0
// returns the lowers possible price with which a tx was or could have been included
func (self *GasPriceOracle) lowestPrice(block *types.Block) *big.Int {
	gasUsed := big.NewInt(0)

	receipts := core.GetBlockReceipts(self.eth.ChainDb(), block.Hash())
	if len(receipts) > 0 {
		if cgu := receipts[len(receipts)-1].CumulativeGasUsed; cgu != nil {
			gasUsed = receipts[len(receipts)-1].CumulativeGasUsed
		}
	}

	if new(big.Int).Mul(gasUsed, big.NewInt(100)).Cmp(new(big.Int).Mul(block.GasLimit(),
		big.NewInt(int64(self.eth.GpoFullBlockRatio)))) < 0 {
		// block is not full, could have posted a tx with MinGasPrice
		return big.NewInt(0)
	}

	txs := block.Transactions()
	if len(txs) == 0 {
		return big.NewInt(0)
	}
	// block is full, find smallest gasPrice
	minPrice := txs[0].GasPrice()
	for i := 1; i < len(txs); i++ {
		price := txs[i].GasPrice()
		if price.Cmp(minPrice) < 0 {
			minPrice = price
		}
	}
	return minPrice
}
Beispiel #3
0
// newRPCTransaction returns a transaction that will serialize to the RPC representation.
func newRPCTransaction(b *types.Block, txHash common.Hash) (*RPCTransaction, error) {
	for idx, tx := range b.Transactions() {
		if tx.Hash() == txHash {
			return newRPCTransactionFromBlockIndex(b, idx)
		}
	}

	return nil, nil
}
Beispiel #4
0
// WriteBlock serializes a block into the database, header and body separately.
func WriteBlock(db ethdb.Database, block *types.Block) error {
	// Store the body first to retain database consistency
	if err := WriteBody(db, block.Hash(), &types.Body{block.Transactions(), block.Uncles()}); err != nil {
		return err
	}
	// Store the header too, signaling full block ownership
	if err := WriteHeader(db, block.Header()); err != nil {
		return err
	}
	return nil
}
Beispiel #5
0
// rpcOutputBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are
// returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain
// transaction hashes.
func (s *PublicBlockChainAPI) rpcOutputBlock(b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) {
	fields := map[string]interface{}{
		"number":           rpc.NewHexNumber(b.Number()),
		"hash":             b.Hash(),
		"parentHash":       b.ParentHash(),
		"nonce":            b.Header().Nonce,
		"sha3Uncles":       b.UncleHash(),
		"logsBloom":        b.Bloom(),
		"stateRoot":        b.Root(),
		"miner":            b.Coinbase(),
		"difficulty":       rpc.NewHexNumber(b.Difficulty()),
		"totalDifficulty":  rpc.NewHexNumber(s.bc.GetTd(b.Hash())),
		"extraData":        fmt.Sprintf("0x%x", b.Extra()),
		"size":             rpc.NewHexNumber(b.Size().Int64()),
		"gasLimit":         rpc.NewHexNumber(b.GasLimit()),
		"gasUsed":          rpc.NewHexNumber(b.GasUsed()),
		"timestamp":        rpc.NewHexNumber(b.Time()),
		"transactionsRoot": b.TxHash(),
		"receiptRoot":      b.ReceiptHash(),
	}

	if inclTx {
		formatTx := func(tx *types.Transaction) (interface{}, error) {
			return tx.Hash(), nil
		}

		if fullTx {
			formatTx = func(tx *types.Transaction) (interface{}, error) {
				return newRPCTransaction(b, tx.Hash())
			}
		}

		txs := b.Transactions()
		transactions := make([]interface{}, len(txs))
		var err error
		for i, tx := range b.Transactions() {
			if transactions[i], err = formatTx(tx); err != nil {
				return nil, err
			}
		}
		fields["transactions"] = transactions
	}

	uncles := b.Uncles()
	uncleHashes := make([]common.Hash, len(uncles))
	for i, uncle := range uncles {
		uncleHashes[i] = uncle.Hash()
	}
	fields["uncles"] = uncleHashes

	return fields, nil
}
Beispiel #6
0
// ValidateBlock validates the given block's header and uncles and verifies the
// the block header's transaction and uncle roots.
//
// ValidateBlock does not validate the header's pow. The pow work validated
// seperately so we can process them in paralel.
//
// ValidateBlock also validates and makes sure that any previous state (or present)
// state that might or might not be present is checked to make sure that fast
// sync has done it's job proper. This prevents the block validator form accepting
// false positives where a header is present but the state is not.
func (v *BlockValidator) ValidateBlock(block *types.Block) error {
	if v.bc.HasBlock(block.Hash()) {
		if _, err := state.New(block.Root(), v.bc.chainDb); err == nil {
			return &KnownBlockError{block.Number(), block.Hash()}
		}
	}
	parent := v.bc.GetBlock(block.ParentHash())
	if parent == nil {
		return ParentError(block.ParentHash())
	}
	if _, err := state.New(parent.Root(), v.bc.chainDb); err != nil {
		return ParentError(block.ParentHash())
	}

	header := block.Header()
	// validate the block header
	if err := ValidateHeader(v.Pow, header, parent.Header(), false, false); err != nil {
		return err
	}
	// verify the uncles are correctly rewarded
	if err := v.VerifyUncles(block, parent); err != nil {
		return err
	}

	// Verify UncleHash before running other uncle validations
	unclesSha := types.CalcUncleHash(block.Uncles())
	if unclesSha != header.UncleHash {
		return fmt.Errorf("invalid uncles root hash. received=%x calculated=%x", header.UncleHash, unclesSha)
	}

	// The transactions Trie's root (R = (Tr [[i, RLP(T1)], [i, RLP(T2)], ... [n, RLP(Tn)]]))
	// can be used by light clients to make sure they've received the correct Txs
	txSha := types.DeriveSha(block.Transactions())
	if txSha != header.TxHash {
		return fmt.Errorf("invalid transaction root hash. received=%x calculated=%x", header.TxHash, txSha)
	}

	return nil
}
Beispiel #7
0
// WriteTransactions stores the transactions associated with a specific block
// into the given database. Beside writing the transaction, the function also
// stores a metadata entry along with the transaction, detailing the position
// of this within the blockchain.
func WriteTransactions(db ethdb.Database, block *types.Block) error {
	batch := db.NewBatch()

	// Iterate over each transaction and encode it with its metadata
	for i, tx := range block.Transactions() {
		// Encode and queue up the transaction for storage
		data, err := rlp.EncodeToBytes(tx)
		if err != nil {
			return err
		}
		if err := batch.Put(tx.Hash().Bytes(), data); err != nil {
			return err
		}
		// Encode and queue up the transaction metadata for storage
		meta := struct {
			BlockHash  common.Hash
			BlockIndex uint64
			Index      uint64
		}{
			BlockHash:  block.Hash(),
			BlockIndex: block.NumberU64(),
			Index:      uint64(i),
		}
		data, err = rlp.EncodeToBytes(meta)
		if err != nil {
			return err
		}
		if err := batch.Put(append(tx.Hash().Bytes(), txMetaSuffix...), data); err != nil {
			return err
		}
	}
	// Write the scheduled data into the database
	if err := batch.Write(); err != nil {
		glog.Fatalf("failed to store transactions into database: %v", err)
		return err
	}
	return nil
}
Beispiel #8
0
// Process processes the state changes according to the Ethereum rules by running
// the transaction messages using the statedb and applying any rewards to both
// the processor (coinbase) and any included uncles.
//
// Process returns the receipts and logs accumulated during the process and
// returns the amount of gas that was used in the process. If any of the
// transactions failed to execute due to insufficient gas it will return an error.
func (p *StateProcessor) Process(block *types.Block, statedb *state.StateDB) (types.Receipts, vm.Logs, *big.Int, error) {
	var (
		receipts     types.Receipts
		totalUsedGas = big.NewInt(0)
		err          error
		header       = block.Header()
		allLogs      vm.Logs
		gp           = new(GasPool).AddGas(block.GasLimit())
	)

	for i, tx := range block.Transactions() {
		statedb.StartRecord(tx.Hash(), block.Hash(), i)

		receipt, logs, _, err := ApplyTransaction(p.bc, gp, statedb, header, tx, totalUsedGas)
		if err != nil {
			return nil, nil, totalUsedGas, err
		}
		receipts = append(receipts, receipt)
		allLogs = append(allLogs, logs...)
	}
	AccumulateRewards(statedb, header, block.Uncles())

	return receipts, allLogs, totalUsedGas, err
}
Beispiel #9
0
// reorgs takes two blocks, an old chain and a new chain and will reconstruct the blocks and inserts them
// to be part of the new canonical chain and accumulates potential missing transactions and post an
// event about them
func (self *BlockChain) reorg(oldBlock, newBlock *types.Block) error {
	var (
		newChain    types.Blocks
		commonBlock *types.Block
		oldStart    = oldBlock
		newStart    = newBlock
		deletedTxs  types.Transactions
		deletedLogs vm.Logs
		// collectLogs collects the logs that were generated during the
		// processing of the block that corresponds with the given hash.
		// These logs are later announced as deleted.
		collectLogs = func(h common.Hash) {
			// Coalesce logs
			receipts := GetBlockReceipts(self.chainDb, h)
			for _, receipt := range receipts {
				deletedLogs = append(deletedLogs, receipt.Logs...)
			}
		}
	)

	// first reduce whoever is higher bound
	if oldBlock.NumberU64() > newBlock.NumberU64() {
		// reduce old chain
		for oldBlock = oldBlock; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = self.GetBlock(oldBlock.ParentHash()) {
			deletedTxs = append(deletedTxs, oldBlock.Transactions()...)

			collectLogs(oldBlock.Hash())
		}
	} else {
		// reduce new chain and append new chain blocks for inserting later on
		for newBlock = newBlock; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = self.GetBlock(newBlock.ParentHash()) {
			newChain = append(newChain, newBlock)
		}
	}
	if oldBlock == nil {
		return fmt.Errorf("Invalid old chain")
	}
	if newBlock == nil {
		return fmt.Errorf("Invalid new chain")
	}

	numSplit := newBlock.Number()
	for {
		if oldBlock.Hash() == newBlock.Hash() {
			commonBlock = oldBlock
			break
		}
		newChain = append(newChain, newBlock)
		deletedTxs = append(deletedTxs, oldBlock.Transactions()...)
		collectLogs(oldBlock.Hash())

		oldBlock, newBlock = self.GetBlock(oldBlock.ParentHash()), self.GetBlock(newBlock.ParentHash())
		if oldBlock == nil {
			return fmt.Errorf("Invalid old chain")
		}
		if newBlock == nil {
			return fmt.Errorf("Invalid new chain")
		}
	}

	if glog.V(logger.Debug) {
		commonHash := commonBlock.Hash()
		glog.Infof("Chain split detected @ %x. Reorganising chain from #%v %x to %x", commonHash[:4], numSplit, oldStart.Hash().Bytes()[:4], newStart.Hash().Bytes()[:4])
	}

	var addedTxs types.Transactions
	// insert blocks. Order does not matter. Last block will be written in ImportChain itself which creates the new head properly
	for _, block := range newChain {
		// insert the block in the canonical way, re-writing history
		self.insert(block)
		// write canonical receipts and transactions
		if err := WriteTransactions(self.chainDb, block); err != nil {
			return err
		}
		receipts := GetBlockReceipts(self.chainDb, block.Hash())
		// write receipts
		if err := WriteReceipts(self.chainDb, receipts); err != nil {
			return err
		}
		// Write map map bloom filters
		if err := WriteMipmapBloom(self.chainDb, block.NumberU64(), receipts); err != nil {
			return err
		}
		addedTxs = append(addedTxs, block.Transactions()...)
	}

	// calculate the difference between deleted and added transactions
	diff := types.TxDifference(deletedTxs, addedTxs)
	// When transactions get deleted from the database that means the
	// receipts that were created in the fork must also be deleted
	for _, tx := range diff {
		DeleteReceipt(self.chainDb, tx.Hash())
		DeleteTransaction(self.chainDb, tx.Hash())
	}
	// Must be posted in a goroutine because of the transaction pool trying
	// to acquire the chain manager lock
	if len(diff) > 0 {
		go self.eventMux.Post(RemovedTransactionEvent{diff})
	}
	if len(deletedLogs) > 0 {
		go self.eventMux.Post(RemovedLogEvent{deletedLogs})
	}

	return nil
}