Beispiel #1
0
// declarePkgObj declares obj in the package scope, records its ident -> obj mapping,
// and updates check.objMap. The object must not be a function or method.
func (check *Checker) declarePkgObj(ident *ast.Ident, obj Object, d *declInfo) {
	assert(ident.Name == obj.Name())

	// spec: "A package-scope or file-scope identifier with name init
	// may only be declared to be a function with this (func()) signature."
	if ident.Name == "init" {
		check.errorf(ident.Pos(), "cannot declare init - must be func")
		return
	}

	check.declare(check.pkg.scope, ident, obj, token.NoPos)
	check.objMap[obj] = d
	obj.setOrder(uint32(len(check.objMap)))
}
Beispiel #2
0
// ident type-checks identifier e and initializes x with the value or type of e.
// If an error occurred, x.mode is set to invalid.
// For the meaning of def and path, see check.typ, below.
//
func (check *Checker) ident(x *operand, e *ast.Ident, def *Named, path []*TypeName) {
	x.mode = invalid
	x.expr = e

	scope, obj := check.scope.LookupParent(e.Name, check.pos)
	if obj == nil {
		if e.Name == "_" {
			check.errorf(e.Pos(), "cannot use _ as value or type")
		} else {
			check.errorf(e.Pos(), "undeclared name: %s", e.Name)
		}
		return
	}

	if !check.conf.AllowUseUninitializedVars {
		if v, ok := obj.(*Var); ok && !v.usable {
			check.errorf(e.Pos(), "possibly uninitialized variable: %s", e.Name)
		}
	}

	check.recordUse(e, obj)

	check.objDecl(obj, def, path)
	typ := obj.Type()
	assert(typ != nil)

	// The object may be dot-imported: If so, remove its package from
	// the map of unused dot imports for the respective file scope.
	// (This code is only needed for dot-imports. Without them,
	// we only have to mark variables, see *Var case below).
	if pkg := obj.Pkg(); pkg != check.pkg && pkg != nil {
		delete(check.unusedDotImports[scope], pkg)
	}

	switch obj := obj.(type) {
	case *PkgName:
		check.errorf(e.Pos(), "use of package %s not in selector", obj.name)
		return

	case *Const:
		check.addDeclDep(obj)
		if typ == Typ[Invalid] {
			return
		}
		if obj == universeIota {
			if check.iota == nil {
				check.errorf(e.Pos(), "cannot use iota outside constant declaration")
				return
			}
			x.val = check.iota
		} else {
			x.val = obj.val
		}
		assert(x.val != nil)
		x.mode = constant_

	case *TypeName:
		x.mode = typexpr
		// check for cycle
		// (it's ok to iterate forward because each named type appears at most once in path)
		for i, prev := range path {
			if prev == obj {
				check.errorf(obj.pos, "illegal cycle in declaration of %s", obj.name)
				// print cycle
				for _, obj := range path[i:] {
					check.errorf(obj.Pos(), "\t%s refers to", obj.Name()) // secondary error, \t indented
				}
				check.errorf(obj.Pos(), "\t%s", obj.Name())
				// maintain x.mode == typexpr despite error
				typ = Typ[Invalid]
				break
			}
		}

	case *Var:
		if obj.pkg == check.pkg {
			obj.used = true
		}
		check.addDeclDep(obj)
		if typ == Typ[Invalid] {
			return
		}
		x.mode = variable

	case *Func:
		check.addDeclDep(obj)
		x.mode = value

	case *Builtin:
		x.id = obj.id
		x.mode = builtin

	case *Nil:
		x.mode = value

	default:
		unreachable()
	}

	x.typ = typ
}
Beispiel #3
0
Datei: stmt.go Projekt: tcard/sgo
// stmt typechecks statement s.
func (check *Checker) stmt(ctxt stmtContext, s ast.Stmt) {
	// statements cannot use iota in general
	// (constant declarations set it explicitly)
	assert(check.iota == nil)

	// statements must end with the same top scope as they started with
	if debug {
		defer func(scope *Scope) {
			// don't check if code is panicking
			if p := recover(); p != nil {
				panic(p)
			}
			assert(scope == check.scope)
		}(check.scope)
	}

	inner := ctxt &^ fallthroughOk
	switch s := s.(type) {
	case *ast.BadStmt, *ast.EmptyStmt:
		// ignore

	case *ast.DeclStmt:
		check.declStmt(s.Decl)

	case *ast.LabeledStmt:
		check.hasLabel = true
		check.stmt(ctxt, s.Stmt)

	case *ast.ExprStmt:
		// spec: "With the exception of specific built-in functions,
		// function and method calls and receive operations can appear
		// in statement context. Such statements may be parenthesized."
		var x operand
		kind := check.rawExpr(&x, s.X, nil)
		var msg string
		switch x.mode {
		default:
			if kind == statement {
				return
			}
			msg = "is not used"
		case builtin:
			msg = "must be called"
		case typexpr:
			msg = "is not an expression"
		}
		check.errorf(x.pos(), "%s %s", &x, msg)

	case *ast.SendStmt:
		var ch, x operand
		check.expr(&ch, s.Chan)
		check.expr(&x, s.Value)
		if ch.mode == invalid || x.mode == invalid {
			return
		}

		tch, ok := ch.typ.Underlying().(*Chan)
		if !ok {
			check.invalidOp(s.Arrow, "cannot send to non-chan type %s", ch.typ)
			return
		}

		if tch.dir == RecvOnly {
			check.invalidOp(s.Arrow, "cannot send to receive-only type %s", tch)
			return
		}

		check.assignment(&x, tch.elem, "send")

	case *ast.IncDecStmt:
		var op token.Token
		switch s.Tok {
		case token.INC:
			op = token.ADD
		case token.DEC:
			op = token.SUB
		default:
			check.invalidAST(s.TokPos, "unknown inc/dec operation %s", s.Tok)
			return
		}

		var x operand
		check.expr(&x, s.X)
		if x.mode == invalid {
			return
		}
		if !isNumeric(x.typ) {
			check.invalidOp(s.X.Pos(), "%s%s (non-numeric type %s)", s.X, s.Tok, x.typ)
			return
		}

		Y := &ast.BasicLit{ValuePos: s.X.Pos(), Kind: token.INT, Value: "1"} // use x's position
		check.binary(&x, nil, s.X, Y, op)
		if x.mode == invalid {
			return
		}
		check.assignVar(s.X, &x)

	case *ast.AssignStmt:
		switch s.Tok {
		case token.ASSIGN, token.DEFINE:
			if len(s.Lhs.List) == 0 {
				check.invalidAST(s.Pos(), "missing lhs in assignment")
				return
			}
			if s.Tok == token.DEFINE {
				check.shortVarDecl(s.TokPos, s.Lhs, s.Rhs)
			} else {
				// regular assignment
				check.assignVars(s.Lhs.List, s.Rhs.List)
			}

		default:
			// assignment operations
			if len(s.Lhs.List) != 1 || len(s.Rhs.List) != 1 {
				check.errorf(s.TokPos, "assignment operation %s requires single-valued expressions", s.Tok)
				return
			}
			op := assignOp(s.Tok)
			if op == token.ILLEGAL {
				check.invalidAST(s.TokPos, "unknown assignment operation %s", s.Tok)
				return
			}
			var x operand
			check.binary(&x, nil, s.Lhs.List[0], s.Rhs.List[0], op)
			if x.mode == invalid {
				return
			}
			check.assignVar(s.Lhs.List[0], &x)
		}

	case *ast.GoStmt:
		check.suspendedCall("go", s.Call)

	case *ast.DeferStmt:
		check.suspendedCall("defer", s.Call)

	case *ast.ReturnStmt:
		res := check.sig.results
		if res.Len() > 0 {
			// function returns results
			// (if one, say the first, result parameter is named, all of them are named)
			if len(s.Results.List) == 0 && res.vars[0].name != "" {
				if res.entangled != nil && isBoolean(res.entangled.typ) {
					check.errorf(s.Pos(), "empty return statement not allowed with entangled bool return values")
				}

				// spec: "Implementation restriction: A compiler may disallow an empty expression
				// list in a "return" statement if a different entity (constant, type, or variable)
				// with the same name as a result parameter is in scope at the place of the return."
				for _, obj := range res.vars {
					// Since we make a copy of the signature scope for the function body, the first
					// time we find the object in the scope chain will be the copied one. We actually
					// are interested in the original, so we need to ignore the first result.
					sc, alt := check.scope.LookupParent(obj.name, check.pos)
					if sc != nil {
						sc = sc.parent
					}
					if _, alt = sc.LookupParent(obj.name, check.pos); alt != nil && alt != obj {
						check.errorf(s.Pos(), "result parameter %s not in scope at return", obj.name)
						check.errorf(alt.Pos(), "\tinner declaration of %s", obj)
						// ok to continue
					}
				}
			} else {
				// return has results or result parameters are unnamed
				check.initVars(res.vars, s.Results, s.Return, res.entangled)
			}
		} else if len(s.Results.List) > 0 {
			check.error(s.Results.List[0].Pos(), "no result values expected")
			check.use(s.Results.List...)
		}

	case *ast.BranchStmt:
		if s.Label != nil {
			check.hasLabel = true
			return // checked in 2nd pass (check.labels)
		}
		switch s.Tok {
		case token.BREAK:
			if ctxt&breakOk == 0 {
				check.error(s.Pos(), "break not in for, switch, or select statement")
			}
		case token.CONTINUE:
			if ctxt&continueOk == 0 {
				check.error(s.Pos(), "continue not in for statement")
			}
		case token.FALLTHROUGH:
			if ctxt&fallthroughOk == 0 {
				check.error(s.Pos(), "fallthrough statement out of place")
			}
		default:
			check.invalidAST(s.Pos(), "branch statement: %s", s.Tok)
		}

	case *ast.BlockStmt:
		check.openScope(s, "block")
		defer check.closeScope()

		check.stmtList(inner, s.List)

	case *ast.IfStmt:
		check.openScope(s, "if")
		defer check.closeScope()

		check.simpleStmt(s.Init)
		var x operand
		check.expr(&x, s.Cond)
		if x.mode != invalid && !isBoolean(x.typ) {
			check.error(s.Cond.Pos(), "non-boolean condition in if statement")
		}

		effs := check.ifCondSideEffects(x)

		wereUsable := map[*Var]bool{}
		sc := check.scope.Parent()
		for sc != nil {
			names := sc.Names()
			for _, name := range names {
				if v, ok := sc.Lookup(name).(*Var); ok {
					wereUsable[v] = v.usable
				}
			}
			sc = sc.Parent()
		}

		collapsed := check.handleEffs(effs, false, check.scope)

		check.stmt(inner, s.Body)
		// The parser produces a correct AST but if it was modified
		// elsewhere the else branch may be invalid. Check again.
		switch s.Else.(type) {
		case nil, *ast.BadStmt:
			// valid or error already reported
		case *ast.IfStmt, *ast.BlockStmt:
			// will check below
		default:
			check.error(s.Else.Pos(), "invalid else branch in if statement")
		}

		usableAfterBody := map[*Var]bool{}
		for v, wasUsable := range wereUsable {
			if v.usable {
				usableAfterBody[v] = true
			}
			v.usable = wasUsable
			if debugUsable {
				fmt.Println("USABLE if restore usable after body:", v.name, fmt.Sprintf("%p", v), v.usable)
			}
		}

		for _, c := range collapsed {
			c.usable = false
			if debugUsable {
				fmt.Println("USABLE if reset collapsed to false after body:", c.name, fmt.Sprintf("%p", c), c.usable)
			}
		}

		if s.Else != nil {
			collapsed = check.handleEffs(effs, true, check.scope.Parent())

			check.stmt(inner, s.Else)

			for v, wasUsable := range wereUsable {
				if !(v.usable && usableAfterBody[v]) {
					v.usable = wasUsable
					if debugUsable {
						fmt.Println("USABLE else restore usable after body:", v.name, fmt.Sprintf("%p", v), v.usable)
					}
				}
			}

			for _, c := range collapsed {
				c.usable = false
				if debugUsable {
					fmt.Println("USABLE if reset collapsed to false after body:", c.name, fmt.Sprintf("%p", c), c.usable)
				}
			}
		}

		if len(s.Body.List) > 0 {
			lastStmt := s.Body.List[len(s.Body.List)-1]
			switch lastStmt := lastStmt.(type) {
			case *ast.ReturnStmt:
				if debugUsable {
					fmt.Println("USABLE if.body returns, so simulate that rest of the statements are in else")
				}
				check.handleEffs(effs, true, check.scope.parent)
			case *ast.ExprStmt:
				call, ok := lastStmt.X.(*ast.CallExpr)
				if !ok {
					break
				}
				fun, ok := call.Fun.(*ast.Ident)
				if !ok || fun.Name != "panic" {
					break
				}
				if debugUsable {
					fmt.Println("USABLE if.body panics, so simulate that rest of the statements are in else")
				}
				check.handleEffs(effs, true, check.scope.parent)
			}
		}

	case *ast.SwitchStmt:
		inner |= breakOk
		check.openScope(s, "switch")
		defer check.closeScope()

		check.simpleStmt(s.Init)
		var x operand
		if s.Tag != nil {
			check.expr(&x, s.Tag)
			// By checking assignment of x to an invisible temporary
			// (as a compiler would), we get all the relevant checks.
			check.assignment(&x, nil, "switch expression")
		} else {
			// spec: "A missing switch expression is
			// equivalent to the boolean value true."
			x.mode = constant_
			x.typ = Typ[Bool]
			x.val = constant.MakeBool(true)
			x.expr = &ast.Ident{NamePos: s.Body.Lbrace, Name: "true"}
		}

		check.multipleDefaults(s.Body.List)

		seen := make(valueMap) // map of seen case values to positions and types
		for i, c := range s.Body.List {
			clause, _ := c.(*ast.CaseClause)
			if clause == nil {
				check.invalidAST(c.Pos(), "incorrect expression switch case")
				continue
			}
			check.caseValues(&x, clause.List.List, seen)
			check.openScope(clause, "case")
			inner := inner
			if i+1 < len(s.Body.List) {
				inner |= fallthroughOk
			}
			check.stmtList(inner, clause.Body)
			check.closeScope()
		}

	case *ast.TypeSwitchStmt:
		inner |= breakOk
		check.openScope(s, "type switch")
		defer check.closeScope()

		check.simpleStmt(s.Init)

		// A type switch guard must be of the form:
		//
		//     TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
		//
		// The parser is checking syntactic correctness;
		// remaining syntactic errors are considered AST errors here.
		// TODO(gri) better factoring of error handling (invalid ASTs)
		//
		var lhs *ast.Ident // lhs identifier or nil
		var rhs ast.Expr
		switch guard := s.Assign.(type) {
		case *ast.ExprStmt:
			rhs = guard.X
		case *ast.AssignStmt:
			if len(guard.Lhs.List) != 1 || guard.Tok != token.DEFINE || len(guard.Rhs.List) != 1 {
				check.invalidAST(s.Pos(), "incorrect form of type switch guard")
				return
			}

			lhs, _ = guard.Lhs.List[0].(*ast.Ident)
			if lhs == nil {
				check.invalidAST(s.Pos(), "incorrect form of type switch guard")
				return
			}

			if lhs.Name == "_" {
				// _ := x.(type) is an invalid short variable declaration
				check.softErrorf(lhs.Pos(), "no new variable on left side of :=")
				lhs = nil // avoid declared but not used error below
			} else {
				check.recordDef(lhs, nil) // lhs variable is implicitly declared in each cause clause
			}

			rhs = guard.Rhs.List[0]

		default:
			check.invalidAST(s.Pos(), "incorrect form of type switch guard")
			return
		}

		// rhs must be of the form: expr.(type) and expr must be an interface
		expr, _ := rhs.(*ast.TypeAssertExpr)
		if expr == nil || expr.Type != nil {
			check.invalidAST(s.Pos(), "incorrect form of type switch guard")
			return
		}
		var x operand
		check.expr(&x, expr.X)
		if x.mode == invalid {
			return
		}
		xtyp, _ := x.typ.Underlying().(*Interface)
		if xtyp == nil {
			check.errorf(x.pos(), "%s is not an interface", &x)
			return
		}

		check.multipleDefaults(s.Body.List)

		var lhsVars []*Var               // list of implicitly declared lhs variables
		seen := make(map[Type]token.Pos) // map of seen types to positions
		for _, s := range s.Body.List {
			clause, _ := s.(*ast.CaseClause)
			if clause == nil {
				check.invalidAST(s.Pos(), "incorrect type switch case")
				continue
			}
			// Check each type in this type switch case.
			T := check.caseTypes(&x, xtyp, clause.List.List, seen)
			check.openScope(clause, "case")
			// If lhs exists, declare a corresponding variable in the case-local scope.
			if lhs != nil {
				// spec: "The TypeSwitchGuard may include a short variable declaration.
				// When that form is used, the variable is declared at the beginning of
				// the implicit block in each clause. In clauses with a case listing
				// exactly one type, the variable has that type; otherwise, the variable
				// has the type of the expression in the TypeSwitchGuard."
				if len(clause.List.List) != 1 || T == nil {
					T = x.typ
				}
				obj := NewVar(lhs.Pos(), check.pkg, lhs.Name, T)
				obj.usable = true
				if debugUsable {
					fmt.Println("USABLE lhs in TypeSwitchStmt:", obj.name, fmt.Sprintf("%p", obj), obj.usable)
				}
				scopePos := clause.End()
				if len(clause.Body) > 0 {
					scopePos = clause.Body[0].Pos()
				}
				check.declare(check.scope, nil, obj, scopePos)
				check.recordImplicit(clause, obj)
				// For the "declared but not used" error, all lhs variables act as
				// one; i.e., if any one of them is 'used', all of them are 'used'.
				// Collect them for later analysis.
				lhsVars = append(lhsVars, obj)
			}
			check.stmtList(inner, clause.Body)
			check.closeScope()
		}

		// If lhs exists, we must have at least one lhs variable that was used.
		if lhs != nil {
			var used bool
			for _, v := range lhsVars {
				if v.used {
					used = true
				}
				v.used = true // avoid usage error when checking entire function
			}
			if !used {
				check.softErrorf(lhs.Pos(), "%s declared but not used", lhs.Name)
			}
		}

	case *ast.SelectStmt:
		inner |= breakOk

		check.multipleDefaults(s.Body.List)

		for _, s := range s.Body.List {
			clause, _ := s.(*ast.CommClause)
			if clause == nil {
				continue // error reported before
			}

			// clause.Comm must be a SendStmt, RecvStmt, or default case
			valid := false
			var rhs ast.Expr // rhs of RecvStmt, or nil
			switch s := clause.Comm.(type) {
			case nil, *ast.SendStmt:
				valid = true
			case *ast.AssignStmt:
				if len(s.Rhs.List) == 1 {
					rhs = s.Rhs.List[0]
				}
			case *ast.ExprStmt:
				rhs = s.X
			}

			// if present, rhs must be a receive operation
			if rhs != nil {
				if x, _ := unparen(rhs).(*ast.UnaryExpr); x != nil && x.Op == token.ARROW {
					valid = true
				}
			}

			if !valid {
				check.error(clause.Comm.Pos(), "select case must be send or receive (possibly with assignment)")
				continue
			}

			check.openScope(s, "case")
			if clause.Comm != nil {
				check.stmt(inner, clause.Comm)
			}
			check.stmtList(inner, clause.Body)
			check.closeScope()
		}

	case *ast.ForStmt:
		inner |= breakOk | continueOk
		check.openScope(s, "for")
		defer check.closeScope()

		check.simpleStmt(s.Init)
		if s.Cond != nil {
			var x operand
			check.expr(&x, s.Cond)
			if x.mode != invalid && !isBoolean(x.typ) {
				check.error(s.Cond.Pos(), "non-boolean condition in for statement")
			}
		}
		check.simpleStmt(s.Post)
		// spec: "The init statement may be a short variable
		// declaration, but the post statement must not."
		if s, _ := s.Post.(*ast.AssignStmt); s != nil && s.Tok == token.DEFINE {
			check.softErrorf(s.Pos(), "cannot declare in post statement")
			check.use(s.Lhs.List...) // avoid follow-up errors
		}
		check.stmt(inner, s.Body)

	case *ast.RangeStmt:
		inner |= breakOk | continueOk
		check.openScope(s, "for")
		defer check.closeScope()

		// check expression to iterate over
		var x operand
		check.expr(&x, s.X)

		// determine key/value types
		var key, val Type
		if x.mode != invalid {
			switch typ := x.typ.Underlying().(type) {
			case *Basic:
				if isString(typ) {
					key = Typ[Int]
					val = universeRune // use 'rune' name
				}
			case *Array:
				key = Typ[Int]
				val = typ.elem
			case *Slice:
				key = Typ[Int]
				val = typ.elem
			case *Pointer:
				if typ, _ := typ.base.Underlying().(*Array); typ != nil {
					key = Typ[Int]
					val = typ.elem
				}
			case *Map:
				key = typ.key
				val = typ.elem
			case *Optional:
				if mtyp, ok := typ.elem.(*Map); ok {
					key = mtyp.key
					val = mtyp.elem
				}
			case *Chan:
				key = typ.elem
				val = Typ[Invalid]
				if typ.dir == SendOnly {
					check.errorf(x.pos(), "cannot range over send-only channel %s", &x)
					// ok to continue
				}
				if s.Value != nil {
					check.errorf(s.Value.Pos(), "iteration over %s permits only one iteration variable", &x)
					// ok to continue
				}
			}
		}

		if key == nil {
			check.errorf(x.pos(), "cannot range over %s", &x)
			// ok to continue
		}

		// check assignment to/declaration of iteration variables
		// (irregular assignment, cannot easily map to existing assignment checks)

		// lhs expressions and initialization value (rhs) types
		lhs := [2]ast.Expr{s.Key, s.Value}
		rhs := [2]Type{key, val} // key, val may be nil

		if s.Tok == token.DEFINE {
			// short variable declaration; variable scope starts after the range clause
			// (the for loop opens a new scope, so variables on the lhs never redeclare
			// previously declared variables)
			var vars []*Var
			for i, lhs := range lhs {
				if lhs == nil {
					continue
				}

				// determine lhs variable
				var obj *Var
				if ident, _ := lhs.(*ast.Ident); ident != nil {
					// declare new variable
					name := ident.Name
					obj = NewVar(ident.Pos(), check.pkg, name, nil)
					check.recordDef(ident, obj)
					// _ variables don't count as new variables
					if name != "_" {
						vars = append(vars, obj)
					}
				} else {
					check.errorf(lhs.Pos(), "cannot declare %s", lhs)
					obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable
				}

				// initialize lhs variable
				if typ := rhs[i]; typ != nil {
					x.mode = value
					x.expr = lhs // we don't have a better rhs expression to use here
					x.typ = typ
					check.initVar(obj, &x, "range clause")
				} else {
					obj.typ = Typ[Invalid]
					obj.used = true // don't complain about unused variable
				}
			}

			// declare variables
			if len(vars) > 0 {
				for _, obj := range vars {
					// spec: "The scope of a constant or variable identifier declared inside
					// a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl
					// for short variable declarations) and ends at the end of the innermost
					// containing block."
					scopePos := s.End()
					check.declare(check.scope, nil /* recordDef already called */, obj, scopePos)
				}
			} else {
				check.error(s.TokPos, "no new variables on left side of :=")
			}
		} else {
			// ordinary assignment
			for i, lhs := range lhs {
				if lhs == nil {
					continue
				}
				if typ := rhs[i]; typ != nil {
					x.mode = value
					x.expr = lhs // we don't have a better rhs expression to use here
					x.typ = typ
					check.assignVar(lhs, &x)
				}
			}
		}

		check.stmt(inner, s.Body)

	default:
		check.error(s.Pos(), "invalid statement")
	}
}