// declarePkgObj declares obj in the package scope, records its ident -> obj mapping, // and updates check.objMap. The object must not be a function or method. func (check *Checker) declarePkgObj(ident *ast.Ident, obj Object, d *declInfo) { assert(ident.Name == obj.Name()) // spec: "A package-scope or file-scope identifier with name init // may only be declared to be a function with this (func()) signature." if ident.Name == "init" { check.errorf(ident.Pos(), "cannot declare init - must be func") return } check.declare(check.pkg.scope, ident, obj, token.NoPos) check.objMap[obj] = d obj.setOrder(uint32(len(check.objMap))) }
// ident type-checks identifier e and initializes x with the value or type of e. // If an error occurred, x.mode is set to invalid. // For the meaning of def and path, see check.typ, below. // func (check *Checker) ident(x *operand, e *ast.Ident, def *Named, path []*TypeName) { x.mode = invalid x.expr = e scope, obj := check.scope.LookupParent(e.Name, check.pos) if obj == nil { if e.Name == "_" { check.errorf(e.Pos(), "cannot use _ as value or type") } else { check.errorf(e.Pos(), "undeclared name: %s", e.Name) } return } if !check.conf.AllowUseUninitializedVars { if v, ok := obj.(*Var); ok && !v.usable { check.errorf(e.Pos(), "possibly uninitialized variable: %s", e.Name) } } check.recordUse(e, obj) check.objDecl(obj, def, path) typ := obj.Type() assert(typ != nil) // The object may be dot-imported: If so, remove its package from // the map of unused dot imports for the respective file scope. // (This code is only needed for dot-imports. Without them, // we only have to mark variables, see *Var case below). if pkg := obj.Pkg(); pkg != check.pkg && pkg != nil { delete(check.unusedDotImports[scope], pkg) } switch obj := obj.(type) { case *PkgName: check.errorf(e.Pos(), "use of package %s not in selector", obj.name) return case *Const: check.addDeclDep(obj) if typ == Typ[Invalid] { return } if obj == universeIota { if check.iota == nil { check.errorf(e.Pos(), "cannot use iota outside constant declaration") return } x.val = check.iota } else { x.val = obj.val } assert(x.val != nil) x.mode = constant_ case *TypeName: x.mode = typexpr // check for cycle // (it's ok to iterate forward because each named type appears at most once in path) for i, prev := range path { if prev == obj { check.errorf(obj.pos, "illegal cycle in declaration of %s", obj.name) // print cycle for _, obj := range path[i:] { check.errorf(obj.Pos(), "\t%s refers to", obj.Name()) // secondary error, \t indented } check.errorf(obj.Pos(), "\t%s", obj.Name()) // maintain x.mode == typexpr despite error typ = Typ[Invalid] break } } case *Var: if obj.pkg == check.pkg { obj.used = true } check.addDeclDep(obj) if typ == Typ[Invalid] { return } x.mode = variable case *Func: check.addDeclDep(obj) x.mode = value case *Builtin: x.id = obj.id x.mode = builtin case *Nil: x.mode = value default: unreachable() } x.typ = typ }
// stmt typechecks statement s. func (check *Checker) stmt(ctxt stmtContext, s ast.Stmt) { // statements cannot use iota in general // (constant declarations set it explicitly) assert(check.iota == nil) // statements must end with the same top scope as they started with if debug { defer func(scope *Scope) { // don't check if code is panicking if p := recover(); p != nil { panic(p) } assert(scope == check.scope) }(check.scope) } inner := ctxt &^ fallthroughOk switch s := s.(type) { case *ast.BadStmt, *ast.EmptyStmt: // ignore case *ast.DeclStmt: check.declStmt(s.Decl) case *ast.LabeledStmt: check.hasLabel = true check.stmt(ctxt, s.Stmt) case *ast.ExprStmt: // spec: "With the exception of specific built-in functions, // function and method calls and receive operations can appear // in statement context. Such statements may be parenthesized." var x operand kind := check.rawExpr(&x, s.X, nil) var msg string switch x.mode { default: if kind == statement { return } msg = "is not used" case builtin: msg = "must be called" case typexpr: msg = "is not an expression" } check.errorf(x.pos(), "%s %s", &x, msg) case *ast.SendStmt: var ch, x operand check.expr(&ch, s.Chan) check.expr(&x, s.Value) if ch.mode == invalid || x.mode == invalid { return } tch, ok := ch.typ.Underlying().(*Chan) if !ok { check.invalidOp(s.Arrow, "cannot send to non-chan type %s", ch.typ) return } if tch.dir == RecvOnly { check.invalidOp(s.Arrow, "cannot send to receive-only type %s", tch) return } check.assignment(&x, tch.elem, "send") case *ast.IncDecStmt: var op token.Token switch s.Tok { case token.INC: op = token.ADD case token.DEC: op = token.SUB default: check.invalidAST(s.TokPos, "unknown inc/dec operation %s", s.Tok) return } var x operand check.expr(&x, s.X) if x.mode == invalid { return } if !isNumeric(x.typ) { check.invalidOp(s.X.Pos(), "%s%s (non-numeric type %s)", s.X, s.Tok, x.typ) return } Y := &ast.BasicLit{ValuePos: s.X.Pos(), Kind: token.INT, Value: "1"} // use x's position check.binary(&x, nil, s.X, Y, op) if x.mode == invalid { return } check.assignVar(s.X, &x) case *ast.AssignStmt: switch s.Tok { case token.ASSIGN, token.DEFINE: if len(s.Lhs.List) == 0 { check.invalidAST(s.Pos(), "missing lhs in assignment") return } if s.Tok == token.DEFINE { check.shortVarDecl(s.TokPos, s.Lhs, s.Rhs) } else { // regular assignment check.assignVars(s.Lhs.List, s.Rhs.List) } default: // assignment operations if len(s.Lhs.List) != 1 || len(s.Rhs.List) != 1 { check.errorf(s.TokPos, "assignment operation %s requires single-valued expressions", s.Tok) return } op := assignOp(s.Tok) if op == token.ILLEGAL { check.invalidAST(s.TokPos, "unknown assignment operation %s", s.Tok) return } var x operand check.binary(&x, nil, s.Lhs.List[0], s.Rhs.List[0], op) if x.mode == invalid { return } check.assignVar(s.Lhs.List[0], &x) } case *ast.GoStmt: check.suspendedCall("go", s.Call) case *ast.DeferStmt: check.suspendedCall("defer", s.Call) case *ast.ReturnStmt: res := check.sig.results if res.Len() > 0 { // function returns results // (if one, say the first, result parameter is named, all of them are named) if len(s.Results.List) == 0 && res.vars[0].name != "" { if res.entangled != nil && isBoolean(res.entangled.typ) { check.errorf(s.Pos(), "empty return statement not allowed with entangled bool return values") } // spec: "Implementation restriction: A compiler may disallow an empty expression // list in a "return" statement if a different entity (constant, type, or variable) // with the same name as a result parameter is in scope at the place of the return." for _, obj := range res.vars { // Since we make a copy of the signature scope for the function body, the first // time we find the object in the scope chain will be the copied one. We actually // are interested in the original, so we need to ignore the first result. sc, alt := check.scope.LookupParent(obj.name, check.pos) if sc != nil { sc = sc.parent } if _, alt = sc.LookupParent(obj.name, check.pos); alt != nil && alt != obj { check.errorf(s.Pos(), "result parameter %s not in scope at return", obj.name) check.errorf(alt.Pos(), "\tinner declaration of %s", obj) // ok to continue } } } else { // return has results or result parameters are unnamed check.initVars(res.vars, s.Results, s.Return, res.entangled) } } else if len(s.Results.List) > 0 { check.error(s.Results.List[0].Pos(), "no result values expected") check.use(s.Results.List...) } case *ast.BranchStmt: if s.Label != nil { check.hasLabel = true return // checked in 2nd pass (check.labels) } switch s.Tok { case token.BREAK: if ctxt&breakOk == 0 { check.error(s.Pos(), "break not in for, switch, or select statement") } case token.CONTINUE: if ctxt&continueOk == 0 { check.error(s.Pos(), "continue not in for statement") } case token.FALLTHROUGH: if ctxt&fallthroughOk == 0 { check.error(s.Pos(), "fallthrough statement out of place") } default: check.invalidAST(s.Pos(), "branch statement: %s", s.Tok) } case *ast.BlockStmt: check.openScope(s, "block") defer check.closeScope() check.stmtList(inner, s.List) case *ast.IfStmt: check.openScope(s, "if") defer check.closeScope() check.simpleStmt(s.Init) var x operand check.expr(&x, s.Cond) if x.mode != invalid && !isBoolean(x.typ) { check.error(s.Cond.Pos(), "non-boolean condition in if statement") } effs := check.ifCondSideEffects(x) wereUsable := map[*Var]bool{} sc := check.scope.Parent() for sc != nil { names := sc.Names() for _, name := range names { if v, ok := sc.Lookup(name).(*Var); ok { wereUsable[v] = v.usable } } sc = sc.Parent() } collapsed := check.handleEffs(effs, false, check.scope) check.stmt(inner, s.Body) // The parser produces a correct AST but if it was modified // elsewhere the else branch may be invalid. Check again. switch s.Else.(type) { case nil, *ast.BadStmt: // valid or error already reported case *ast.IfStmt, *ast.BlockStmt: // will check below default: check.error(s.Else.Pos(), "invalid else branch in if statement") } usableAfterBody := map[*Var]bool{} for v, wasUsable := range wereUsable { if v.usable { usableAfterBody[v] = true } v.usable = wasUsable if debugUsable { fmt.Println("USABLE if restore usable after body:", v.name, fmt.Sprintf("%p", v), v.usable) } } for _, c := range collapsed { c.usable = false if debugUsable { fmt.Println("USABLE if reset collapsed to false after body:", c.name, fmt.Sprintf("%p", c), c.usable) } } if s.Else != nil { collapsed = check.handleEffs(effs, true, check.scope.Parent()) check.stmt(inner, s.Else) for v, wasUsable := range wereUsable { if !(v.usable && usableAfterBody[v]) { v.usable = wasUsable if debugUsable { fmt.Println("USABLE else restore usable after body:", v.name, fmt.Sprintf("%p", v), v.usable) } } } for _, c := range collapsed { c.usable = false if debugUsable { fmt.Println("USABLE if reset collapsed to false after body:", c.name, fmt.Sprintf("%p", c), c.usable) } } } if len(s.Body.List) > 0 { lastStmt := s.Body.List[len(s.Body.List)-1] switch lastStmt := lastStmt.(type) { case *ast.ReturnStmt: if debugUsable { fmt.Println("USABLE if.body returns, so simulate that rest of the statements are in else") } check.handleEffs(effs, true, check.scope.parent) case *ast.ExprStmt: call, ok := lastStmt.X.(*ast.CallExpr) if !ok { break } fun, ok := call.Fun.(*ast.Ident) if !ok || fun.Name != "panic" { break } if debugUsable { fmt.Println("USABLE if.body panics, so simulate that rest of the statements are in else") } check.handleEffs(effs, true, check.scope.parent) } } case *ast.SwitchStmt: inner |= breakOk check.openScope(s, "switch") defer check.closeScope() check.simpleStmt(s.Init) var x operand if s.Tag != nil { check.expr(&x, s.Tag) // By checking assignment of x to an invisible temporary // (as a compiler would), we get all the relevant checks. check.assignment(&x, nil, "switch expression") } else { // spec: "A missing switch expression is // equivalent to the boolean value true." x.mode = constant_ x.typ = Typ[Bool] x.val = constant.MakeBool(true) x.expr = &ast.Ident{NamePos: s.Body.Lbrace, Name: "true"} } check.multipleDefaults(s.Body.List) seen := make(valueMap) // map of seen case values to positions and types for i, c := range s.Body.List { clause, _ := c.(*ast.CaseClause) if clause == nil { check.invalidAST(c.Pos(), "incorrect expression switch case") continue } check.caseValues(&x, clause.List.List, seen) check.openScope(clause, "case") inner := inner if i+1 < len(s.Body.List) { inner |= fallthroughOk } check.stmtList(inner, clause.Body) check.closeScope() } case *ast.TypeSwitchStmt: inner |= breakOk check.openScope(s, "type switch") defer check.closeScope() check.simpleStmt(s.Init) // A type switch guard must be of the form: // // TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . // // The parser is checking syntactic correctness; // remaining syntactic errors are considered AST errors here. // TODO(gri) better factoring of error handling (invalid ASTs) // var lhs *ast.Ident // lhs identifier or nil var rhs ast.Expr switch guard := s.Assign.(type) { case *ast.ExprStmt: rhs = guard.X case *ast.AssignStmt: if len(guard.Lhs.List) != 1 || guard.Tok != token.DEFINE || len(guard.Rhs.List) != 1 { check.invalidAST(s.Pos(), "incorrect form of type switch guard") return } lhs, _ = guard.Lhs.List[0].(*ast.Ident) if lhs == nil { check.invalidAST(s.Pos(), "incorrect form of type switch guard") return } if lhs.Name == "_" { // _ := x.(type) is an invalid short variable declaration check.softErrorf(lhs.Pos(), "no new variable on left side of :=") lhs = nil // avoid declared but not used error below } else { check.recordDef(lhs, nil) // lhs variable is implicitly declared in each cause clause } rhs = guard.Rhs.List[0] default: check.invalidAST(s.Pos(), "incorrect form of type switch guard") return } // rhs must be of the form: expr.(type) and expr must be an interface expr, _ := rhs.(*ast.TypeAssertExpr) if expr == nil || expr.Type != nil { check.invalidAST(s.Pos(), "incorrect form of type switch guard") return } var x operand check.expr(&x, expr.X) if x.mode == invalid { return } xtyp, _ := x.typ.Underlying().(*Interface) if xtyp == nil { check.errorf(x.pos(), "%s is not an interface", &x) return } check.multipleDefaults(s.Body.List) var lhsVars []*Var // list of implicitly declared lhs variables seen := make(map[Type]token.Pos) // map of seen types to positions for _, s := range s.Body.List { clause, _ := s.(*ast.CaseClause) if clause == nil { check.invalidAST(s.Pos(), "incorrect type switch case") continue } // Check each type in this type switch case. T := check.caseTypes(&x, xtyp, clause.List.List, seen) check.openScope(clause, "case") // If lhs exists, declare a corresponding variable in the case-local scope. if lhs != nil { // spec: "The TypeSwitchGuard may include a short variable declaration. // When that form is used, the variable is declared at the beginning of // the implicit block in each clause. In clauses with a case listing // exactly one type, the variable has that type; otherwise, the variable // has the type of the expression in the TypeSwitchGuard." if len(clause.List.List) != 1 || T == nil { T = x.typ } obj := NewVar(lhs.Pos(), check.pkg, lhs.Name, T) obj.usable = true if debugUsable { fmt.Println("USABLE lhs in TypeSwitchStmt:", obj.name, fmt.Sprintf("%p", obj), obj.usable) } scopePos := clause.End() if len(clause.Body) > 0 { scopePos = clause.Body[0].Pos() } check.declare(check.scope, nil, obj, scopePos) check.recordImplicit(clause, obj) // For the "declared but not used" error, all lhs variables act as // one; i.e., if any one of them is 'used', all of them are 'used'. // Collect them for later analysis. lhsVars = append(lhsVars, obj) } check.stmtList(inner, clause.Body) check.closeScope() } // If lhs exists, we must have at least one lhs variable that was used. if lhs != nil { var used bool for _, v := range lhsVars { if v.used { used = true } v.used = true // avoid usage error when checking entire function } if !used { check.softErrorf(lhs.Pos(), "%s declared but not used", lhs.Name) } } case *ast.SelectStmt: inner |= breakOk check.multipleDefaults(s.Body.List) for _, s := range s.Body.List { clause, _ := s.(*ast.CommClause) if clause == nil { continue // error reported before } // clause.Comm must be a SendStmt, RecvStmt, or default case valid := false var rhs ast.Expr // rhs of RecvStmt, or nil switch s := clause.Comm.(type) { case nil, *ast.SendStmt: valid = true case *ast.AssignStmt: if len(s.Rhs.List) == 1 { rhs = s.Rhs.List[0] } case *ast.ExprStmt: rhs = s.X } // if present, rhs must be a receive operation if rhs != nil { if x, _ := unparen(rhs).(*ast.UnaryExpr); x != nil && x.Op == token.ARROW { valid = true } } if !valid { check.error(clause.Comm.Pos(), "select case must be send or receive (possibly with assignment)") continue } check.openScope(s, "case") if clause.Comm != nil { check.stmt(inner, clause.Comm) } check.stmtList(inner, clause.Body) check.closeScope() } case *ast.ForStmt: inner |= breakOk | continueOk check.openScope(s, "for") defer check.closeScope() check.simpleStmt(s.Init) if s.Cond != nil { var x operand check.expr(&x, s.Cond) if x.mode != invalid && !isBoolean(x.typ) { check.error(s.Cond.Pos(), "non-boolean condition in for statement") } } check.simpleStmt(s.Post) // spec: "The init statement may be a short variable // declaration, but the post statement must not." if s, _ := s.Post.(*ast.AssignStmt); s != nil && s.Tok == token.DEFINE { check.softErrorf(s.Pos(), "cannot declare in post statement") check.use(s.Lhs.List...) // avoid follow-up errors } check.stmt(inner, s.Body) case *ast.RangeStmt: inner |= breakOk | continueOk check.openScope(s, "for") defer check.closeScope() // check expression to iterate over var x operand check.expr(&x, s.X) // determine key/value types var key, val Type if x.mode != invalid { switch typ := x.typ.Underlying().(type) { case *Basic: if isString(typ) { key = Typ[Int] val = universeRune // use 'rune' name } case *Array: key = Typ[Int] val = typ.elem case *Slice: key = Typ[Int] val = typ.elem case *Pointer: if typ, _ := typ.base.Underlying().(*Array); typ != nil { key = Typ[Int] val = typ.elem } case *Map: key = typ.key val = typ.elem case *Optional: if mtyp, ok := typ.elem.(*Map); ok { key = mtyp.key val = mtyp.elem } case *Chan: key = typ.elem val = Typ[Invalid] if typ.dir == SendOnly { check.errorf(x.pos(), "cannot range over send-only channel %s", &x) // ok to continue } if s.Value != nil { check.errorf(s.Value.Pos(), "iteration over %s permits only one iteration variable", &x) // ok to continue } } } if key == nil { check.errorf(x.pos(), "cannot range over %s", &x) // ok to continue } // check assignment to/declaration of iteration variables // (irregular assignment, cannot easily map to existing assignment checks) // lhs expressions and initialization value (rhs) types lhs := [2]ast.Expr{s.Key, s.Value} rhs := [2]Type{key, val} // key, val may be nil if s.Tok == token.DEFINE { // short variable declaration; variable scope starts after the range clause // (the for loop opens a new scope, so variables on the lhs never redeclare // previously declared variables) var vars []*Var for i, lhs := range lhs { if lhs == nil { continue } // determine lhs variable var obj *Var if ident, _ := lhs.(*ast.Ident); ident != nil { // declare new variable name := ident.Name obj = NewVar(ident.Pos(), check.pkg, name, nil) check.recordDef(ident, obj) // _ variables don't count as new variables if name != "_" { vars = append(vars, obj) } } else { check.errorf(lhs.Pos(), "cannot declare %s", lhs) obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable } // initialize lhs variable if typ := rhs[i]; typ != nil { x.mode = value x.expr = lhs // we don't have a better rhs expression to use here x.typ = typ check.initVar(obj, &x, "range clause") } else { obj.typ = Typ[Invalid] obj.used = true // don't complain about unused variable } } // declare variables if len(vars) > 0 { for _, obj := range vars { // spec: "The scope of a constant or variable identifier declared inside // a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl // for short variable declarations) and ends at the end of the innermost // containing block." scopePos := s.End() check.declare(check.scope, nil /* recordDef already called */, obj, scopePos) } } else { check.error(s.TokPos, "no new variables on left side of :=") } } else { // ordinary assignment for i, lhs := range lhs { if lhs == nil { continue } if typ := rhs[i]; typ != nil { x.mode = value x.expr = lhs // we don't have a better rhs expression to use here x.typ = typ check.assignVar(lhs, &x) } } } check.stmt(inner, s.Body) default: check.error(s.Pos(), "invalid statement") } }