Beispiel #1
0
Datei: gsubr.go Projekt: rsc/tmp
/*
 * generate
 *	as $c, n
 */
func ginscon(as int, c int64, n2 *gc.Node) {
	var n1 gc.Node

	switch as {
	case x86.AADDL,
		x86.AMOVL,
		x86.ALEAL:
		gc.Nodconst(&n1, gc.Types[gc.TINT32], c)

	default:
		gc.Nodconst(&n1, gc.Types[gc.TINT64], c)
	}

	if as != x86.AMOVQ && (c < -(1<<31) || c >= 1<<31) {
		// cannot have 64-bit immediate in ADD, etc.
		// instead, MOV into register first.
		var ntmp gc.Node
		gc.Regalloc(&ntmp, gc.Types[gc.TINT64], nil)

		gins(x86.AMOVQ, &n1, &ntmp)
		gins(as, &ntmp, n2)
		gc.Regfree(&ntmp)
		return
	}

	gins(as, &n1, n2)
}
Beispiel #2
0
Datei: ggen.go Projekt: rsc/tmp
/*
 * generate byte multiply:
 *	res = nl * nr
 * there is no 2-operand byte multiply instruction so
 * we do a full-width multiplication and truncate afterwards.
 */
func cgen_bmul(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) bool {
	if optoas(op, nl.Type) != x86.AIMULB {
		return false
	}

	// largest ullman on left.
	if nl.Ullman < nr.Ullman {
		tmp := nl
		nl = nr
		nr = tmp
	}

	// generate operands in "8-bit" registers.
	var n1b gc.Node
	gc.Regalloc(&n1b, nl.Type, res)

	gc.Cgen(nl, &n1b)
	var n2b gc.Node
	gc.Regalloc(&n2b, nr.Type, nil)
	gc.Cgen(nr, &n2b)

	// perform full-width multiplication.
	t := gc.Types[gc.TUINT64]

	if gc.Issigned[nl.Type.Etype] {
		t = gc.Types[gc.TINT64]
	}
	var n1 gc.Node
	gc.Nodreg(&n1, t, int(n1b.Reg))
	var n2 gc.Node
	gc.Nodreg(&n2, t, int(n2b.Reg))
	a := optoas(op, t)
	gins(a, &n2, &n1)

	// truncate.
	gmove(&n1, res)

	gc.Regfree(&n1b)
	gc.Regfree(&n2b)
	return true
}
Beispiel #3
0
Datei: ggen.go Projekt: rsc/tmp
// res = runtime.getg()
func getg(res *gc.Node) {
	var n1 gc.Node
	gc.Regalloc(&n1, res.Type, res)
	mov := optoas(gc.OAS, gc.Types[gc.Tptr])
	p := gins(mov, nil, &n1)
	p.From.Type = obj.TYPE_REG
	p.From.Reg = x86.REG_TLS
	p = gins(mov, nil, &n1)
	p.From = p.To
	p.From.Type = obj.TYPE_MEM
	p.From.Index = x86.REG_TLS
	p.From.Scale = 1
	gmove(&n1, res)
	gc.Regfree(&n1)
}
Beispiel #4
0
Datei: ggen.go Projekt: rsc/tmp
/*
 * register dr is one of the special ones (AX, CX, DI, SI, etc.).
 * we need to use it.  if it is already allocated as a temporary
 * (r > 1; can only happen if a routine like sgen passed a
 * special as cgen's res and then cgen used regalloc to reuse
 * it as its own temporary), then move it for now to another
 * register.  caller must call restx to move it back.
 * the move is not necessary if dr == res, because res is
 * known to be dead.
 */
func savex(dr int, x *gc.Node, oldx *gc.Node, res *gc.Node, t *gc.Type) {
	r := int(reg[dr])

	// save current ax and dx if they are live
	// and not the destination
	*oldx = gc.Node{}

	gc.Nodreg(x, t, dr)
	if r > 1 && !gc.Samereg(x, res) {
		gc.Regalloc(oldx, gc.Types[gc.TINT64], nil)
		x.Type = gc.Types[gc.TINT64]
		gmove(x, oldx)
		x.Type = t
		oldx.Ostk = int32(r) // squirrel away old r value
		reg[dr] = 1
	}
}
Beispiel #5
0
Datei: ggen.go Projekt: rsc/tmp
/*
 * generate shift according to op, one of:
 *	res = nl << nr
 *	res = nl >> nr
 */
func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	a := optoas(op, nl.Type)

	if nr.Op == gc.OLITERAL {
		var n1 gc.Node
		gc.Regalloc(&n1, nl.Type, res)
		gc.Cgen(nl, &n1)
		sc := uint64(gc.Mpgetfix(nr.Val.U.Xval))
		if sc >= uint64(nl.Type.Width*8) {
			// large shift gets 2 shifts by width-1
			var n3 gc.Node
			gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)

			gins(a, &n3, &n1)
			gins(a, &n3, &n1)
		} else {
			gins(a, nr, &n1)
		}
		gmove(&n1, res)
		gc.Regfree(&n1)
		return
	}

	if nl.Ullman >= gc.UINF {
		var n4 gc.Node
		gc.Tempname(&n4, nl.Type)
		gc.Cgen(nl, &n4)
		nl = &n4
	}

	if nr.Ullman >= gc.UINF {
		var n5 gc.Node
		gc.Tempname(&n5, nr.Type)
		gc.Cgen(nr, &n5)
		nr = &n5
	}

	rcx := int(reg[x86.REG_CX])
	var n1 gc.Node
	gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX)

	// Allow either uint32 or uint64 as shift type,
	// to avoid unnecessary conversion from uint32 to uint64
	// just to do the comparison.
	tcount := gc.Types[gc.Simtype[nr.Type.Etype]]

	if tcount.Etype < gc.TUINT32 {
		tcount = gc.Types[gc.TUINT32]
	}

	gc.Regalloc(&n1, nr.Type, &n1) // to hold the shift type in CX
	var n3 gc.Node
	gc.Regalloc(&n3, tcount, &n1) // to clear high bits of CX

	var cx gc.Node
	gc.Nodreg(&cx, gc.Types[gc.TUINT64], x86.REG_CX)

	var oldcx gc.Node
	if rcx > 0 && !gc.Samereg(&cx, res) {
		gc.Regalloc(&oldcx, gc.Types[gc.TUINT64], nil)
		gmove(&cx, &oldcx)
	}

	cx.Type = tcount

	var n2 gc.Node
	if gc.Samereg(&cx, res) {
		gc.Regalloc(&n2, nl.Type, nil)
	} else {
		gc.Regalloc(&n2, nl.Type, res)
	}
	if nl.Ullman >= nr.Ullman {
		gc.Cgen(nl, &n2)
		gc.Cgen(nr, &n1)
		gmove(&n1, &n3)
	} else {
		gc.Cgen(nr, &n1)
		gmove(&n1, &n3)
		gc.Cgen(nl, &n2)
	}

	gc.Regfree(&n3)

	// test and fix up large shifts
	if !bounded {
		gc.Nodconst(&n3, tcount, nl.Type.Width*8)
		gins(optoas(gc.OCMP, tcount), &n1, &n3)
		p1 := gc.Gbranch(optoas(gc.OLT, tcount), nil, +1)
		if op == gc.ORSH && gc.Issigned[nl.Type.Etype] {
			gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)
			gins(a, &n3, &n2)
		} else {
			gc.Nodconst(&n3, nl.Type, 0)
			gmove(&n3, &n2)
		}

		gc.Patch(p1, gc.Pc)
	}

	gins(a, &n1, &n2)

	if oldcx.Op != 0 {
		cx.Type = gc.Types[gc.TUINT64]
		gmove(&oldcx, &cx)
		gc.Regfree(&oldcx)
	}

	gmove(&n2, res)

	gc.Regfree(&n1)
	gc.Regfree(&n2)
}
Beispiel #6
0
Datei: ggen.go Projekt: rsc/tmp
/*
 * generate division.
 * generates one of:
 *	res = nl / nr
 *	res = nl % nr
 * according to op.
 */
func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	// Have to be careful about handling
	// most negative int divided by -1 correctly.
	// The hardware will trap.
	// Also the byte divide instruction needs AH,
	// which we otherwise don't have to deal with.
	// Easiest way to avoid for int8, int16: use int32.
	// For int32 and int64, use explicit test.
	// Could use int64 hw for int32.
	t := nl.Type

	t0 := t
	check := 0
	if gc.Issigned[t.Etype] {
		check = 1
		if gc.Isconst(nl, gc.CTINT) && gc.Mpgetfix(nl.Val.U.Xval) != -(1<<uint64(t.Width*8-1)) {
			check = 0
		} else if gc.Isconst(nr, gc.CTINT) && gc.Mpgetfix(nr.Val.U.Xval) != -1 {
			check = 0
		}
	}

	if t.Width < 4 {
		if gc.Issigned[t.Etype] {
			t = gc.Types[gc.TINT32]
		} else {
			t = gc.Types[gc.TUINT32]
		}
		check = 0
	}

	a := optoas(op, t)

	var n3 gc.Node
	gc.Regalloc(&n3, t0, nil)
	var ax gc.Node
	var oldax gc.Node
	if nl.Ullman >= nr.Ullman {
		savex(x86.REG_AX, &ax, &oldax, res, t0)
		gc.Cgen(nl, &ax)
		gc.Regalloc(&ax, t0, &ax) // mark ax live during cgen
		gc.Cgen(nr, &n3)
		gc.Regfree(&ax)
	} else {
		gc.Cgen(nr, &n3)
		savex(x86.REG_AX, &ax, &oldax, res, t0)
		gc.Cgen(nl, &ax)
	}

	if t != t0 {
		// Convert
		ax1 := ax

		n31 := n3
		ax.Type = t
		n3.Type = t
		gmove(&ax1, &ax)
		gmove(&n31, &n3)
	}

	var n4 gc.Node
	if gc.Nacl {
		// Native Client does not relay the divide-by-zero trap
		// to the executing program, so we must insert a check
		// for ourselves.
		gc.Nodconst(&n4, t, 0)

		gins(optoas(gc.OCMP, t), &n3, &n4)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if panicdiv == nil {
			panicdiv = gc.Sysfunc("panicdivide")
		}
		gc.Ginscall(panicdiv, -1)
		gc.Patch(p1, gc.Pc)
	}

	var p2 *obj.Prog
	if check != 0 {
		gc.Nodconst(&n4, t, -1)
		gins(optoas(gc.OCMP, t), &n3, &n4)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if op == gc.ODIV {
			// a / (-1) is -a.
			gins(optoas(gc.OMINUS, t), nil, &ax)

			gmove(&ax, res)
		} else {
			// a % (-1) is 0.
			gc.Nodconst(&n4, t, 0)

			gmove(&n4, res)
		}

		p2 = gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)
	}

	var olddx gc.Node
	var dx gc.Node
	savex(x86.REG_DX, &dx, &olddx, res, t)
	if !gc.Issigned[t.Etype] {
		gc.Nodconst(&n4, t, 0)
		gmove(&n4, &dx)
	} else {
		gins(optoas(gc.OEXTEND, t), nil, nil)
	}
	gins(a, &n3, nil)
	gc.Regfree(&n3)
	if op == gc.ODIV {
		gmove(&ax, res)
	} else {
		gmove(&dx, res)
	}
	restx(&dx, &olddx)
	if check != 0 {
		gc.Patch(p2, gc.Pc)
	}
	restx(&ax, &oldax)
}
Beispiel #7
0
Datei: gsubr.go Projekt: rsc/tmp
/*
 * generate move:
 *	t = f
 * hard part is conversions.
 */
func gmove(f *gc.Node, t *gc.Node) {
	if gc.Debug['M'] != 0 {
		fmt.Printf("gmove %v -> %v\n", gc.Nconv(f, obj.FmtLong), gc.Nconv(t, obj.FmtLong))
	}

	ft := gc.Simsimtype(f.Type)
	tt := gc.Simsimtype(t.Type)
	cvt := t.Type

	if gc.Iscomplex[ft] || gc.Iscomplex[tt] {
		gc.Complexmove(f, t)
		return
	}

	// cannot have two memory operands
	var a int
	if gc.Ismem(f) && gc.Ismem(t) {
		goto hard
	}

	// convert constant to desired type
	if f.Op == gc.OLITERAL {
		var con gc.Node
		gc.Convconst(&con, t.Type, &f.Val)
		f = &con
		ft = tt // so big switch will choose a simple mov

		// some constants can't move directly to memory.
		if gc.Ismem(t) {
			// float constants come from memory.
			if gc.Isfloat[tt] {
				goto hard
			}

			// 64-bit immediates are really 32-bit sign-extended
			// unless moving into a register.
			if gc.Isint[tt] {
				if gc.Mpcmpfixfix(con.Val.U.Xval, gc.Minintval[gc.TINT32]) < 0 {
					goto hard
				}
				if gc.Mpcmpfixfix(con.Val.U.Xval, gc.Maxintval[gc.TINT32]) > 0 {
					goto hard
				}
			}
		}
	}

	// value -> value copy, only one memory operand.
	// figure out the instruction to use.
	// break out of switch for one-instruction gins.
	// goto rdst for "destination must be register".
	// goto hard for "convert to cvt type first".
	// otherwise handle and return.

	switch uint32(ft)<<16 | uint32(tt) {
	default:
		gc.Fatal("gmove %v -> %v", gc.Tconv(f.Type, obj.FmtLong), gc.Tconv(t.Type, obj.FmtLong))

		/*
		 * integer copy and truncate
		 */
	case gc.TINT8<<16 | gc.TINT8, // same size
		gc.TINT8<<16 | gc.TUINT8,
		gc.TUINT8<<16 | gc.TINT8,
		gc.TUINT8<<16 | gc.TUINT8,
		gc.TINT16<<16 | gc.TINT8,
		// truncate
		gc.TUINT16<<16 | gc.TINT8,
		gc.TINT32<<16 | gc.TINT8,
		gc.TUINT32<<16 | gc.TINT8,
		gc.TINT64<<16 | gc.TINT8,
		gc.TUINT64<<16 | gc.TINT8,
		gc.TINT16<<16 | gc.TUINT8,
		gc.TUINT16<<16 | gc.TUINT8,
		gc.TINT32<<16 | gc.TUINT8,
		gc.TUINT32<<16 | gc.TUINT8,
		gc.TINT64<<16 | gc.TUINT8,
		gc.TUINT64<<16 | gc.TUINT8:
		a = x86.AMOVB

	case gc.TINT16<<16 | gc.TINT16, // same size
		gc.TINT16<<16 | gc.TUINT16,
		gc.TUINT16<<16 | gc.TINT16,
		gc.TUINT16<<16 | gc.TUINT16,
		gc.TINT32<<16 | gc.TINT16,
		// truncate
		gc.TUINT32<<16 | gc.TINT16,
		gc.TINT64<<16 | gc.TINT16,
		gc.TUINT64<<16 | gc.TINT16,
		gc.TINT32<<16 | gc.TUINT16,
		gc.TUINT32<<16 | gc.TUINT16,
		gc.TINT64<<16 | gc.TUINT16,
		gc.TUINT64<<16 | gc.TUINT16:
		a = x86.AMOVW

	case gc.TINT32<<16 | gc.TINT32, // same size
		gc.TINT32<<16 | gc.TUINT32,
		gc.TUINT32<<16 | gc.TINT32,
		gc.TUINT32<<16 | gc.TUINT32:
		a = x86.AMOVL

	case gc.TINT64<<16 | gc.TINT32, // truncate
		gc.TUINT64<<16 | gc.TINT32,
		gc.TINT64<<16 | gc.TUINT32,
		gc.TUINT64<<16 | gc.TUINT32:
		a = x86.AMOVQL

	case gc.TINT64<<16 | gc.TINT64, // same size
		gc.TINT64<<16 | gc.TUINT64,
		gc.TUINT64<<16 | gc.TINT64,
		gc.TUINT64<<16 | gc.TUINT64:
		a = x86.AMOVQ

		/*
		 * integer up-conversions
		 */
	case gc.TINT8<<16 | gc.TINT16, // sign extend int8
		gc.TINT8<<16 | gc.TUINT16:
		a = x86.AMOVBWSX

		goto rdst

	case gc.TINT8<<16 | gc.TINT32,
		gc.TINT8<<16 | gc.TUINT32:
		a = x86.AMOVBLSX
		goto rdst

	case gc.TINT8<<16 | gc.TINT64,
		gc.TINT8<<16 | gc.TUINT64:
		a = x86.AMOVBQSX
		goto rdst

	case gc.TUINT8<<16 | gc.TINT16, // zero extend uint8
		gc.TUINT8<<16 | gc.TUINT16:
		a = x86.AMOVBWZX

		goto rdst

	case gc.TUINT8<<16 | gc.TINT32,
		gc.TUINT8<<16 | gc.TUINT32:
		a = x86.AMOVBLZX
		goto rdst

	case gc.TUINT8<<16 | gc.TINT64,
		gc.TUINT8<<16 | gc.TUINT64:
		a = x86.AMOVBQZX
		goto rdst

	case gc.TINT16<<16 | gc.TINT32, // sign extend int16
		gc.TINT16<<16 | gc.TUINT32:
		a = x86.AMOVWLSX

		goto rdst

	case gc.TINT16<<16 | gc.TINT64,
		gc.TINT16<<16 | gc.TUINT64:
		a = x86.AMOVWQSX
		goto rdst

	case gc.TUINT16<<16 | gc.TINT32, // zero extend uint16
		gc.TUINT16<<16 | gc.TUINT32:
		a = x86.AMOVWLZX

		goto rdst

	case gc.TUINT16<<16 | gc.TINT64,
		gc.TUINT16<<16 | gc.TUINT64:
		a = x86.AMOVWQZX
		goto rdst

	case gc.TINT32<<16 | gc.TINT64, // sign extend int32
		gc.TINT32<<16 | gc.TUINT64:
		a = x86.AMOVLQSX

		goto rdst

		// AMOVL into a register zeros the top of the register,
	// so this is not always necessary, but if we rely on AMOVL
	// the optimizer is almost certain to screw with us.
	case gc.TUINT32<<16 | gc.TINT64, // zero extend uint32
		gc.TUINT32<<16 | gc.TUINT64:
		a = x86.AMOVLQZX

		goto rdst

		/*
		* float to integer
		 */
	case gc.TFLOAT32<<16 | gc.TINT32:
		a = x86.ACVTTSS2SL

		goto rdst

	case gc.TFLOAT64<<16 | gc.TINT32:
		a = x86.ACVTTSD2SL
		goto rdst

	case gc.TFLOAT32<<16 | gc.TINT64:
		a = x86.ACVTTSS2SQ
		goto rdst

	case gc.TFLOAT64<<16 | gc.TINT64:
		a = x86.ACVTTSD2SQ
		goto rdst

		// convert via int32.
	case gc.TFLOAT32<<16 | gc.TINT16,
		gc.TFLOAT32<<16 | gc.TINT8,
		gc.TFLOAT32<<16 | gc.TUINT16,
		gc.TFLOAT32<<16 | gc.TUINT8,
		gc.TFLOAT64<<16 | gc.TINT16,
		gc.TFLOAT64<<16 | gc.TINT8,
		gc.TFLOAT64<<16 | gc.TUINT16,
		gc.TFLOAT64<<16 | gc.TUINT8:
		cvt = gc.Types[gc.TINT32]

		goto hard

		// convert via int64.
	case gc.TFLOAT32<<16 | gc.TUINT32,
		gc.TFLOAT64<<16 | gc.TUINT32:
		cvt = gc.Types[gc.TINT64]

		goto hard

		// algorithm is:
	//	if small enough, use native float64 -> int64 conversion.
	//	otherwise, subtract 2^63, convert, and add it back.
	case gc.TFLOAT32<<16 | gc.TUINT64,
		gc.TFLOAT64<<16 | gc.TUINT64:
		a := x86.ACVTTSS2SQ

		if ft == gc.TFLOAT64 {
			a = x86.ACVTTSD2SQ
		}
		bignodes()
		var r1 gc.Node
		gc.Regalloc(&r1, gc.Types[ft], nil)
		var r2 gc.Node
		gc.Regalloc(&r2, gc.Types[tt], t)
		var r3 gc.Node
		gc.Regalloc(&r3, gc.Types[ft], nil)
		var r4 gc.Node
		gc.Regalloc(&r4, gc.Types[tt], nil)
		gins(optoas(gc.OAS, f.Type), f, &r1)
		gins(optoas(gc.OCMP, f.Type), &bigf, &r1)
		p1 := gc.Gbranch(optoas(gc.OLE, f.Type), nil, +1)
		gins(a, &r1, &r2)
		p2 := gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)
		gins(optoas(gc.OAS, f.Type), &bigf, &r3)
		gins(optoas(gc.OSUB, f.Type), &r3, &r1)
		gins(a, &r1, &r2)
		gins(x86.AMOVQ, &bigi, &r4)
		gins(x86.AXORQ, &r4, &r2)
		gc.Patch(p2, gc.Pc)
		gmove(&r2, t)
		gc.Regfree(&r4)
		gc.Regfree(&r3)
		gc.Regfree(&r2)
		gc.Regfree(&r1)
		return

		/*
		 * integer to float
		 */
	case gc.TINT32<<16 | gc.TFLOAT32:
		a = x86.ACVTSL2SS

		goto rdst

	case gc.TINT32<<16 | gc.TFLOAT64:
		a = x86.ACVTSL2SD
		goto rdst

	case gc.TINT64<<16 | gc.TFLOAT32:
		a = x86.ACVTSQ2SS
		goto rdst

	case gc.TINT64<<16 | gc.TFLOAT64:
		a = x86.ACVTSQ2SD
		goto rdst

		// convert via int32
	case gc.TINT16<<16 | gc.TFLOAT32,
		gc.TINT16<<16 | gc.TFLOAT64,
		gc.TINT8<<16 | gc.TFLOAT32,
		gc.TINT8<<16 | gc.TFLOAT64,
		gc.TUINT16<<16 | gc.TFLOAT32,
		gc.TUINT16<<16 | gc.TFLOAT64,
		gc.TUINT8<<16 | gc.TFLOAT32,
		gc.TUINT8<<16 | gc.TFLOAT64:
		cvt = gc.Types[gc.TINT32]

		goto hard

		// convert via int64.
	case gc.TUINT32<<16 | gc.TFLOAT32,
		gc.TUINT32<<16 | gc.TFLOAT64:
		cvt = gc.Types[gc.TINT64]

		goto hard

		// algorithm is:
	//	if small enough, use native int64 -> uint64 conversion.
	//	otherwise, halve (rounding to odd?), convert, and double.
	case gc.TUINT64<<16 | gc.TFLOAT32,
		gc.TUINT64<<16 | gc.TFLOAT64:
		a := x86.ACVTSQ2SS

		if tt == gc.TFLOAT64 {
			a = x86.ACVTSQ2SD
		}
		var zero gc.Node
		gc.Nodconst(&zero, gc.Types[gc.TUINT64], 0)
		var one gc.Node
		gc.Nodconst(&one, gc.Types[gc.TUINT64], 1)
		var r1 gc.Node
		gc.Regalloc(&r1, f.Type, f)
		var r2 gc.Node
		gc.Regalloc(&r2, t.Type, t)
		var r3 gc.Node
		gc.Regalloc(&r3, f.Type, nil)
		var r4 gc.Node
		gc.Regalloc(&r4, f.Type, nil)
		gmove(f, &r1)
		gins(x86.ACMPQ, &r1, &zero)
		p1 := gc.Gbranch(x86.AJLT, nil, +1)
		gins(a, &r1, &r2)
		p2 := gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)
		gmove(&r1, &r3)
		gins(x86.ASHRQ, &one, &r3)
		gmove(&r1, &r4)
		gins(x86.AANDL, &one, &r4)
		gins(x86.AORQ, &r4, &r3)
		gins(a, &r3, &r2)
		gins(optoas(gc.OADD, t.Type), &r2, &r2)
		gc.Patch(p2, gc.Pc)
		gmove(&r2, t)
		gc.Regfree(&r4)
		gc.Regfree(&r3)
		gc.Regfree(&r2)
		gc.Regfree(&r1)
		return

		/*
		 * float to float
		 */
	case gc.TFLOAT32<<16 | gc.TFLOAT32:
		a = x86.AMOVSS

	case gc.TFLOAT64<<16 | gc.TFLOAT64:
		a = x86.AMOVSD

	case gc.TFLOAT32<<16 | gc.TFLOAT64:
		a = x86.ACVTSS2SD
		goto rdst

	case gc.TFLOAT64<<16 | gc.TFLOAT32:
		a = x86.ACVTSD2SS
		goto rdst
	}

	gins(a, f, t)
	return

	// requires register destination
rdst:
	{
		var r1 gc.Node
		gc.Regalloc(&r1, t.Type, t)

		gins(a, f, &r1)
		gmove(&r1, t)
		gc.Regfree(&r1)
		return
	}

	// requires register intermediate
hard:
	var r1 gc.Node
	gc.Regalloc(&r1, cvt, t)

	gmove(f, &r1)
	gmove(&r1, t)
	gc.Regfree(&r1)
	return
}
Beispiel #8
0
Datei: gsubr.go Projekt: rsc/tmp
/*
 * generate code to compute address of n,
 * a reference to a (perhaps nested) field inside
 * an array or struct.
 * return 0 on failure, 1 on success.
 * on success, leaves usable address in a.
 *
 * caller is responsible for calling sudoclean
 * after successful sudoaddable,
 * to release the register used for a.
 */
func sudoaddable(as int, n *gc.Node, a *obj.Addr) bool {
	if n.Type == nil {
		return false
	}

	*a = obj.Addr{}

	switch n.Op {
	case gc.OLITERAL:
		if !gc.Isconst(n, gc.CTINT) {
			break
		}
		v := gc.Mpgetfix(n.Val.U.Xval)
		if v >= 32000 || v <= -32000 {
			break
		}
		switch as {
		default:
			return false

		case x86.AADDB,
			x86.AADDW,
			x86.AADDL,
			x86.AADDQ,
			x86.ASUBB,
			x86.ASUBW,
			x86.ASUBL,
			x86.ASUBQ,
			x86.AANDB,
			x86.AANDW,
			x86.AANDL,
			x86.AANDQ,
			x86.AORB,
			x86.AORW,
			x86.AORL,
			x86.AORQ,
			x86.AXORB,
			x86.AXORW,
			x86.AXORL,
			x86.AXORQ,
			x86.AINCB,
			x86.AINCW,
			x86.AINCL,
			x86.AINCQ,
			x86.ADECB,
			x86.ADECW,
			x86.ADECL,
			x86.ADECQ,
			x86.AMOVB,
			x86.AMOVW,
			x86.AMOVL,
			x86.AMOVQ:
			break
		}

		cleani += 2
		reg := &clean[cleani-1]
		reg1 := &clean[cleani-2]
		reg.Op = gc.OEMPTY
		reg1.Op = gc.OEMPTY
		gc.Naddr(a, n)
		return true

	case gc.ODOT,
		gc.ODOTPTR:
		cleani += 2
		reg := &clean[cleani-1]
		reg1 := &clean[cleani-2]
		reg.Op = gc.OEMPTY
		reg1.Op = gc.OEMPTY
		var nn *gc.Node
		var oary [10]int64
		o := gc.Dotoffset(n, oary[:], &nn)
		if nn == nil {
			sudoclean()
			return false
		}

		if nn.Addable && o == 1 && oary[0] >= 0 {
			// directly addressable set of DOTs
			n1 := *nn

			n1.Type = n.Type
			n1.Xoffset += oary[0]
			gc.Naddr(a, &n1)
			return true
		}

		gc.Regalloc(reg, gc.Types[gc.Tptr], nil)
		n1 := *reg
		n1.Op = gc.OINDREG
		if oary[0] >= 0 {
			gc.Agen(nn, reg)
			n1.Xoffset = oary[0]
		} else {
			gc.Cgen(nn, reg)
			gc.Cgen_checknil(reg)
			n1.Xoffset = -(oary[0] + 1)
		}

		for i := 1; i < o; i++ {
			if oary[i] >= 0 {
				gc.Fatal("can't happen")
			}
			gins(movptr, &n1, reg)
			gc.Cgen_checknil(reg)
			n1.Xoffset = -(oary[i] + 1)
		}

		a.Type = obj.TYPE_NONE
		a.Index = obj.TYPE_NONE
		gc.Fixlargeoffset(&n1)
		gc.Naddr(a, &n1)
		return true

	case gc.OINDEX:
		return false
	}

	return false
}