Ejemplo n.º 1
0
// PrecompiledContracts returns the default set of precompiled ethereum
// contracts defined by the ethereum yellow paper.
func PrecompiledContracts() map[string]*PrecompiledAccount {
	return map[string]*PrecompiledAccount{
		// ECRECOVER
		string(common.LeftPadBytes([]byte{1}, 20)): &PrecompiledAccount{func(l int) *big.Int {
			return params.EcrecoverGas
		}, ecrecoverFunc},

		// SHA256
		string(common.LeftPadBytes([]byte{2}, 20)): &PrecompiledAccount{func(l int) *big.Int {
			n := big.NewInt(int64(l+31) / 32)
			n.Mul(n, params.Sha256WordGas)
			return n.Add(n, params.Sha256Gas)
		}, sha256Func},

		// RIPEMD160
		string(common.LeftPadBytes([]byte{3}, 20)): &PrecompiledAccount{func(l int) *big.Int {
			n := big.NewInt(int64(l+31) / 32)
			n.Mul(n, params.Ripemd160WordGas)
			return n.Add(n, params.Ripemd160Gas)
		}, ripemd160Func},

		string(common.LeftPadBytes([]byte{4}, 20)): &PrecompiledAccount{func(l int) *big.Int {
			n := big.NewInt(int64(l+31) / 32)
			n.Mul(n, params.IdentityWordGas)

			return n.Add(n, params.IdentityGas)
		}, memCpy},
	}
}
Ejemplo n.º 2
0
// sha3 returns the canonical sha3 of the 32byte (padded) input
func sha3(in ...[]byte) []byte {
	out := make([]byte, len(in)*32)
	for i, input := range in {
		copy(out[i*32:i*32+32], common.LeftPadBytes(input, 32))
	}
	return crypto.Sha3(out)
}
Ejemplo n.º 3
0
func ecrecoverFunc(in []byte) []byte {
	in = common.RightPadBytes(in, 128)
	// "in" is (hash, v, r, s), each 32 bytes
	// but for ecrecover we want (r, s, v)

	r := common.BytesToBig(in[64:96])
	s := common.BytesToBig(in[96:128])
	// Treat V as a 256bit integer
	vbig := common.Bytes2Big(in[32:64])
	v := byte(vbig.Uint64())

	if !crypto.ValidateSignatureValues(v, r, s) {
		glog.V(logger.Debug).Infof("EC RECOVER FAIL: v, r or s value invalid")
		return nil
	}

	// v needs to be at the end and normalized for libsecp256k1
	vbignormal := new(big.Int).Sub(vbig, big.NewInt(27))
	vnormal := byte(vbignormal.Uint64())
	rsv := append(in[64:128], vnormal)
	pubKey, err := crypto.Ecrecover(in[:32], rsv)
	// make sure the public key is a valid one
	if err != nil {
		glog.V(logger.Error).Infof("EC RECOVER FAIL: ", err)
		return nil
	}

	// the first byte of pubkey is bitcoin heritage
	return common.LeftPadBytes(crypto.Sha3(pubKey[1:])[12:], 32)
}
Ejemplo n.º 4
0
func opByte(instr instruction, pc *uint64, env Environment, contract *Contract, memory *Memory, stack *stack) {
	th, val := stack.pop(), stack.pop()
	if th.Cmp(big.NewInt(32)) < 0 {
		byte := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()]))
		stack.push(byte)
	} else {
		stack.push(new(big.Int))
	}
}
Ejemplo n.º 5
0
func Sign(hash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
	if len(hash) != 32 {
		return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash))
	}

	seckey := common.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8)
	defer zeroBytes(seckey)
	sig, err = secp256k1.Sign(hash, seckey)
	return
}
Ejemplo n.º 6
0
// StdErrFormat formats a slice of StructLogs to human readable format
func StdErrFormat(logs []StructLog) {
	fmt.Fprintf(os.Stderr, "VM STAT %d OPs\n", len(logs))
	for _, log := range logs {
		fmt.Fprintf(os.Stderr, "PC %08d: %s GAS: %v COST: %v", log.Pc, log.Op, log.Gas, log.GasCost)
		if log.Err != nil {
			fmt.Fprintf(os.Stderr, " ERROR: %v", log.Err)
		}
		fmt.Fprintf(os.Stderr, "\n")

		fmt.Fprintln(os.Stderr, "STACK =", len(log.Stack))

		for i := len(log.Stack) - 1; i >= 0; i-- {
			fmt.Fprintf(os.Stderr, "%04d: %x\n", len(log.Stack)-i-1, common.LeftPadBytes(log.Stack[i].Bytes(), 32))
		}

		const maxMem = 10
		addr := 0
		fmt.Fprintln(os.Stderr, "MEM =", len(log.Memory))
		for i := 0; i+16 <= len(log.Memory) && addr < maxMem; i += 16 {
			data := log.Memory[i : i+16]
			str := fmt.Sprintf("%04d: % x  ", addr*16, data)
			for _, r := range data {
				if r == 0 {
					str += "."
				} else if unicode.IsPrint(rune(r)) {
					str += fmt.Sprintf("%s", string(r))
				} else {
					str += "?"
				}
			}
			addr++
			fmt.Fprintln(os.Stderr, str)
		}

		fmt.Fprintln(os.Stderr, "STORAGE =", len(log.Storage))
		for h, item := range log.Storage {
			fmt.Fprintf(os.Stderr, "%x: %x\n", h, common.LeftPadBytes(item, 32))
		}
		fmt.Fprintln(os.Stderr)
	}
}
Ejemplo n.º 7
0
func S256(n *big.Int) []byte {
	sint := common.S256(n)
	ret := common.LeftPadBytes(sint.Bytes(), 32)
	if sint.Cmp(common.Big0) < 0 {
		for i, b := range ret {
			if b == 0 {
				ret[i] = 1
				continue
			}
			break
		}
	}

	return ret
}
Ejemplo n.º 8
0
func ripemd160Func(in []byte) []byte {
	return common.LeftPadBytes(crypto.Ripemd160(in), 32)
}
Ejemplo n.º 9
0
// Test the given input parameter `v` and checks if it matches certain
// criteria
// * Big integers are checks for ptr types and if the given value is
//   assignable
// * Integer are checked for size
// * Strings, addresses and bytes are checks for type and size
func (t Type) pack(v interface{}) ([]byte, error) {
	value := reflect.ValueOf(v)
	switch kind := value.Kind(); kind {
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
		if t.Type != ubig_t {
			return nil, fmt.Errorf("type mismatch: %s for %T", t.Type, v)
		}
		return packNum(value, t.T), nil
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		if t.Type != ubig_t {
			return nil, fmt.Errorf("type mismatch: %s for %T", t.Type, v)
		}
		return packNum(value, t.T), nil
	case reflect.Ptr:
		// If the value is a ptr do a assign check (only used by
		// big.Int for now)
		if t.Type == ubig_t && value.Type() != ubig_t {
			return nil, fmt.Errorf("type mismatch: %s for %T", t.Type, v)
		}
		return packNum(value, t.T), nil
	case reflect.String:
		if t.Size > -1 && value.Len() > t.Size {
			return nil, fmt.Errorf("%v out of bound. %d for %d", value.Kind(), value.Len(), t.Size)
		}
		return []byte(common.LeftPadString(t.String(), 32)), nil
	case reflect.Slice:
		if t.Size > -1 && value.Len() > t.Size {
			return nil, fmt.Errorf("%v out of bound. %d for %d", value.Kind(), value.Len(), t.Size)
		}

		// Address is a special slice. The slice acts as one rather than a list of elements.
		if t.T == AddressTy {
			return common.LeftPadBytes(v.([]byte), 32), nil
		}

		// Signed / Unsigned check
		if (t.T != IntTy && isSigned(value)) || (t.T == UintTy && isSigned(value)) {
			return nil, fmt.Errorf("slice of incompatible types.")
		}

		var packed []byte
		for i := 0; i < value.Len(); i++ {
			packed = append(packed, packNum(value.Index(i), t.T)...)
		}
		return packed, nil
	case reflect.Bool:
		if value.Bool() {
			return common.LeftPadBytes(common.Big1.Bytes(), 32), nil
		} else {
			return common.LeftPadBytes(common.Big0.Bytes(), 32), nil
		}
	case reflect.Array:
		if v, ok := value.Interface().(common.Address); ok {
			return common.LeftPadBytes(v[:], 32), nil
		} else if v, ok := value.Interface().(common.Hash); ok {
			return v[:], nil
		}
	}

	return nil, fmt.Errorf("ABI: bad input given %v", value.Kind())
}
Ejemplo n.º 10
0
// U256 will ensure unsigned 256bit on big nums
func U256(n *big.Int) []byte {
	return common.LeftPadBytes(common.U256(n).Bytes(), 32)
}