// PrecompiledContracts returns the default set of precompiled ethereum // contracts defined by the ethereum yellow paper. func PrecompiledContracts() map[string]*PrecompiledAccount { return map[string]*PrecompiledAccount{ // ECRECOVER string(common.LeftPadBytes([]byte{1}, 20)): &PrecompiledAccount{func(l int) *big.Int { return params.EcrecoverGas }, ecrecoverFunc}, // SHA256 string(common.LeftPadBytes([]byte{2}, 20)): &PrecompiledAccount{func(l int) *big.Int { n := big.NewInt(int64(l+31) / 32) n.Mul(n, params.Sha256WordGas) return n.Add(n, params.Sha256Gas) }, sha256Func}, // RIPEMD160 string(common.LeftPadBytes([]byte{3}, 20)): &PrecompiledAccount{func(l int) *big.Int { n := big.NewInt(int64(l+31) / 32) n.Mul(n, params.Ripemd160WordGas) return n.Add(n, params.Ripemd160Gas) }, ripemd160Func}, string(common.LeftPadBytes([]byte{4}, 20)): &PrecompiledAccount{func(l int) *big.Int { n := big.NewInt(int64(l+31) / 32) n.Mul(n, params.IdentityWordGas) return n.Add(n, params.IdentityGas) }, memCpy}, } }
// sha3 returns the canonical sha3 of the 32byte (padded) input func sha3(in ...[]byte) []byte { out := make([]byte, len(in)*32) for i, input := range in { copy(out[i*32:i*32+32], common.LeftPadBytes(input, 32)) } return crypto.Sha3(out) }
func ecrecoverFunc(in []byte) []byte { in = common.RightPadBytes(in, 128) // "in" is (hash, v, r, s), each 32 bytes // but for ecrecover we want (r, s, v) r := common.BytesToBig(in[64:96]) s := common.BytesToBig(in[96:128]) // Treat V as a 256bit integer vbig := common.Bytes2Big(in[32:64]) v := byte(vbig.Uint64()) if !crypto.ValidateSignatureValues(v, r, s) { glog.V(logger.Debug).Infof("EC RECOVER FAIL: v, r or s value invalid") return nil } // v needs to be at the end and normalized for libsecp256k1 vbignormal := new(big.Int).Sub(vbig, big.NewInt(27)) vnormal := byte(vbignormal.Uint64()) rsv := append(in[64:128], vnormal) pubKey, err := crypto.Ecrecover(in[:32], rsv) // make sure the public key is a valid one if err != nil { glog.V(logger.Error).Infof("EC RECOVER FAIL: ", err) return nil } // the first byte of pubkey is bitcoin heritage return common.LeftPadBytes(crypto.Sha3(pubKey[1:])[12:], 32) }
func opByte(instr instruction, pc *uint64, env Environment, contract *Contract, memory *Memory, stack *stack) { th, val := stack.pop(), stack.pop() if th.Cmp(big.NewInt(32)) < 0 { byte := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) stack.push(byte) } else { stack.push(new(big.Int)) } }
func Sign(hash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) { if len(hash) != 32 { return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash)) } seckey := common.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8) defer zeroBytes(seckey) sig, err = secp256k1.Sign(hash, seckey) return }
// StdErrFormat formats a slice of StructLogs to human readable format func StdErrFormat(logs []StructLog) { fmt.Fprintf(os.Stderr, "VM STAT %d OPs\n", len(logs)) for _, log := range logs { fmt.Fprintf(os.Stderr, "PC %08d: %s GAS: %v COST: %v", log.Pc, log.Op, log.Gas, log.GasCost) if log.Err != nil { fmt.Fprintf(os.Stderr, " ERROR: %v", log.Err) } fmt.Fprintf(os.Stderr, "\n") fmt.Fprintln(os.Stderr, "STACK =", len(log.Stack)) for i := len(log.Stack) - 1; i >= 0; i-- { fmt.Fprintf(os.Stderr, "%04d: %x\n", len(log.Stack)-i-1, common.LeftPadBytes(log.Stack[i].Bytes(), 32)) } const maxMem = 10 addr := 0 fmt.Fprintln(os.Stderr, "MEM =", len(log.Memory)) for i := 0; i+16 <= len(log.Memory) && addr < maxMem; i += 16 { data := log.Memory[i : i+16] str := fmt.Sprintf("%04d: % x ", addr*16, data) for _, r := range data { if r == 0 { str += "." } else if unicode.IsPrint(rune(r)) { str += fmt.Sprintf("%s", string(r)) } else { str += "?" } } addr++ fmt.Fprintln(os.Stderr, str) } fmt.Fprintln(os.Stderr, "STORAGE =", len(log.Storage)) for h, item := range log.Storage { fmt.Fprintf(os.Stderr, "%x: %x\n", h, common.LeftPadBytes(item, 32)) } fmt.Fprintln(os.Stderr) } }
func S256(n *big.Int) []byte { sint := common.S256(n) ret := common.LeftPadBytes(sint.Bytes(), 32) if sint.Cmp(common.Big0) < 0 { for i, b := range ret { if b == 0 { ret[i] = 1 continue } break } } return ret }
func ripemd160Func(in []byte) []byte { return common.LeftPadBytes(crypto.Ripemd160(in), 32) }
// Test the given input parameter `v` and checks if it matches certain // criteria // * Big integers are checks for ptr types and if the given value is // assignable // * Integer are checked for size // * Strings, addresses and bytes are checks for type and size func (t Type) pack(v interface{}) ([]byte, error) { value := reflect.ValueOf(v) switch kind := value.Kind(); kind { case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: if t.Type != ubig_t { return nil, fmt.Errorf("type mismatch: %s for %T", t.Type, v) } return packNum(value, t.T), nil case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: if t.Type != ubig_t { return nil, fmt.Errorf("type mismatch: %s for %T", t.Type, v) } return packNum(value, t.T), nil case reflect.Ptr: // If the value is a ptr do a assign check (only used by // big.Int for now) if t.Type == ubig_t && value.Type() != ubig_t { return nil, fmt.Errorf("type mismatch: %s for %T", t.Type, v) } return packNum(value, t.T), nil case reflect.String: if t.Size > -1 && value.Len() > t.Size { return nil, fmt.Errorf("%v out of bound. %d for %d", value.Kind(), value.Len(), t.Size) } return []byte(common.LeftPadString(t.String(), 32)), nil case reflect.Slice: if t.Size > -1 && value.Len() > t.Size { return nil, fmt.Errorf("%v out of bound. %d for %d", value.Kind(), value.Len(), t.Size) } // Address is a special slice. The slice acts as one rather than a list of elements. if t.T == AddressTy { return common.LeftPadBytes(v.([]byte), 32), nil } // Signed / Unsigned check if (t.T != IntTy && isSigned(value)) || (t.T == UintTy && isSigned(value)) { return nil, fmt.Errorf("slice of incompatible types.") } var packed []byte for i := 0; i < value.Len(); i++ { packed = append(packed, packNum(value.Index(i), t.T)...) } return packed, nil case reflect.Bool: if value.Bool() { return common.LeftPadBytes(common.Big1.Bytes(), 32), nil } else { return common.LeftPadBytes(common.Big0.Bytes(), 32), nil } case reflect.Array: if v, ok := value.Interface().(common.Address); ok { return common.LeftPadBytes(v[:], 32), nil } else if v, ok := value.Interface().(common.Hash); ok { return v[:], nil } } return nil, fmt.Errorf("ABI: bad input given %v", value.Kind()) }
// U256 will ensure unsigned 256bit on big nums func U256(n *big.Int) []byte { return common.LeftPadBytes(common.U256(n).Bytes(), 32) }