Example #1
0
File: ggen.go Project: arnold8/go
func ginscmp(op int, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
	if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && n1.Int() == 0 && n2.Op != gc.OLITERAL {
		op = gc.Brrev(op)
		n1, n2 = n2, n1
	}
	var r1, r2, g1, g2 gc.Node
	gc.Regalloc(&r1, t, n1)
	gc.Regalloc(&g1, n1.Type, &r1)
	gc.Cgen(n1, &g1)
	gmove(&g1, &r1)
	if gc.Isint[t.Etype] && n2.Op == gc.OLITERAL && n2.Int() == 0 {
		gins(arm.ACMP, &r1, n2)
	} else {
		gc.Regalloc(&r2, t, n2)
		gc.Regalloc(&g2, n1.Type, &r2)
		gc.Cgen(n2, &g2)
		gmove(&g2, &r2)
		gins(optoas(gc.OCMP, t), &r1, &r2)
		gc.Regfree(&g2)
		gc.Regfree(&r2)
	}
	gc.Regfree(&g1)
	gc.Regfree(&r1)
	return gc.Gbranch(optoas(op, t), nil, likely)
}
Example #2
0
File: ggen.go Project: Samurais/go
/*
 * generate byte multiply:
 *	res = nl * nr
 * there is no 2-operand byte multiply instruction so
 * we do a full-width multiplication and truncate afterwards.
 */
func cgen_bmul(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) bool {
	if optoas(op, nl.Type) != x86.AIMULB {
		return false
	}

	// copy from byte to full registers
	t := gc.Types[gc.TUINT32]

	if gc.Issigned[nl.Type.Etype] {
		t = gc.Types[gc.TINT32]
	}

	// largest ullman on left.
	if nl.Ullman < nr.Ullman {
		nl, nr = nr, nl
	}

	var nt gc.Node
	gc.Tempname(&nt, nl.Type)
	gc.Cgen(nl, &nt)
	var n1 gc.Node
	gc.Regalloc(&n1, t, res)
	gc.Cgen(nr, &n1)
	var n2 gc.Node
	gc.Regalloc(&n2, t, nil)
	gmove(&nt, &n2)
	a := optoas(op, t)
	gins(a, &n2, &n1)
	gc.Regfree(&n2)
	gmove(&n1, res)
	gc.Regfree(&n1)

	return true
}
Example #3
0
File: ggen.go Project: Greentor/go
/*
 * generate division.
 * generates one of:
 *	res = nl / nr
 *	res = nl % nr
 * according to op.
 */
func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	t := nl.Type

	t0 := t

	if t.Width < 8 {
		if t.IsSigned() {
			t = gc.Types[gc.TINT64]
		} else {
			t = gc.Types[gc.TUINT64]
		}
	}

	a := optoas(gc.ODIV, t)

	var tl gc.Node
	gc.Regalloc(&tl, t0, nil)
	var tr gc.Node
	gc.Regalloc(&tr, t0, nil)
	if nl.Ullman >= nr.Ullman {
		gc.Cgen(nl, &tl)
		gc.Cgen(nr, &tr)
	} else {
		gc.Cgen(nr, &tr)
		gc.Cgen(nl, &tl)
	}

	if t != t0 {
		// Convert
		tl2 := tl

		tr2 := tr
		tl.Type = t
		tr.Type = t
		gmove(&tl2, &tl)
		gmove(&tr2, &tr)
	}

	// Handle divide-by-zero panic.
	p1 := ginsbranch(mips.ABNE, nil, &tr, nil, 0)
	if panicdiv == nil {
		panicdiv = gc.Sysfunc("panicdivide")
	}
	gc.Ginscall(panicdiv, -1)
	gc.Patch(p1, gc.Pc)

	gins3(a, &tr, &tl, nil)
	gc.Regfree(&tr)
	if op == gc.ODIV {
		var lo gc.Node
		gc.Nodreg(&lo, gc.Types[gc.TUINT64], mips.REG_LO)
		gins(mips.AMOVV, &lo, &tl)
	} else { // remainder in REG_HI
		var hi gc.Node
		gc.Nodreg(&hi, gc.Types[gc.TUINT64], mips.REG_HI)
		gins(mips.AMOVV, &hi, &tl)
	}
	gmove(&tl, res)
	gc.Regfree(&tl)
}
Example #4
0
/*
 * generate array index into res.
 * n might be any size; res is 32-bit.
 * returns Prog* to patch to panic call.
 */
func cgenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog {
	if !gc.Is64(n.Type) {
		gc.Cgen(n, res)
		return nil
	}

	var tmp gc.Node
	gc.Tempname(&tmp, gc.Types[gc.TINT64])
	gc.Cgen(n, &tmp)
	var lo gc.Node
	var hi gc.Node
	split64(&tmp, &lo, &hi)
	gmove(&lo, res)
	if bounded {
		splitclean()
		return nil
	}

	var n1 gc.Node
	gc.Regalloc(&n1, gc.Types[gc.TINT32], nil)
	var n2 gc.Node
	gc.Regalloc(&n2, gc.Types[gc.TINT32], nil)
	var zero gc.Node
	gc.Nodconst(&zero, gc.Types[gc.TINT32], 0)
	gmove(&hi, &n1)
	gmove(&zero, &n2)
	gins(arm.ACMP, &n1, &n2)
	gc.Regfree(&n2)
	gc.Regfree(&n1)
	splitclean()
	return gc.Gbranch(arm.ABNE, nil, -1)
}
Example #5
0
func ginscmp(op int, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
	if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && gc.Smallintconst(n1) && n2.Op != gc.OLITERAL {
		// Reverse comparison to place constant last.
		op = gc.Brrev(op)
		n1, n2 = n2, n1
	}
	// General case.
	var r1, r2, g1, g2 gc.Node
	if n1.Op == gc.ONAME && n1.Class&gc.PHEAP == 0 || n1.Op == gc.OINDREG {
		r1 = *n1
	} else {
		gc.Regalloc(&r1, t, n1)
		gc.Regalloc(&g1, n1.Type, &r1)
		gc.Cgen(n1, &g1)
		gmove(&g1, &r1)
	}
	if n2.Op == gc.OLITERAL && gc.Isint[t.Etype] && gc.Smallintconst(n2) {
		r2 = *n2
	} else {
		gc.Regalloc(&r2, t, n2)
		gc.Regalloc(&g2, n1.Type, &r2)
		gc.Cgen(n2, &g2)
		gmove(&g2, &r2)
	}
	gins(optoas(gc.OCMP, t), &r1, &r2)
	if r1.Op == gc.OREGISTER {
		gc.Regfree(&g1)
		gc.Regfree(&r1)
	}
	if r2.Op == gc.OREGISTER {
		gc.Regfree(&g2)
		gc.Regfree(&r2)
	}
	return gc.Gbranch(optoas(op, t), nil, likely)
}
Example #6
0
File: gsubr.go Project: arnold8/go
func ginscmp(op int, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
	if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && n2.Op != gc.OLITERAL {
		// Reverse comparison to place constant last.
		op = gc.Brrev(op)
		n1, n2 = n2, n1
	}

	var r1, r2, g1, g2 gc.Node
	gc.Regalloc(&r1, t, n1)
	gc.Regalloc(&g1, n1.Type, &r1)
	gc.Cgen(n1, &g1)
	gmove(&g1, &r1)
	if gc.Isint[t.Etype] && gc.Isconst(n2, gc.CTINT) {
		ginscon2(optoas(gc.OCMP, t), &r1, n2.Int())
	} else {
		gc.Regalloc(&r2, t, n2)
		gc.Regalloc(&g2, n1.Type, &r2)
		gc.Cgen(n2, &g2)
		gmove(&g2, &r2)
		gcmp(optoas(gc.OCMP, t), &r1, &r2)
		gc.Regfree(&g2)
		gc.Regfree(&r2)
	}
	gc.Regfree(&g1)
	gc.Regfree(&r1)
	return gc.Gbranch(optoas(op, t), nil, likely)
}
Example #7
0
File: cgen.go Project: Greentor/go
/*
 * generate an addressable node in res, containing the value of n.
 * n is an array index, and might be any size; res width is <= 32-bit.
 * returns Prog* to patch to panic call.
 */
func igenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog {
	if !gc.Is64(n.Type) {
		if n.Addable && (gc.Simtype[n.Etype] == gc.TUINT32 || gc.Simtype[n.Etype] == gc.TINT32) {
			// nothing to do.
			*res = *n
		} else {
			gc.Tempname(res, gc.Types[gc.TUINT32])
			gc.Cgen(n, res)
		}

		return nil
	}

	var tmp gc.Node
	gc.Tempname(&tmp, gc.Types[gc.TINT64])
	gc.Cgen(n, &tmp)
	var lo gc.Node
	var hi gc.Node
	split64(&tmp, &lo, &hi)
	gc.Tempname(res, gc.Types[gc.TUINT32])
	gmove(&lo, res)
	if bounded {
		splitclean()
		return nil
	}

	var zero gc.Node
	gc.Nodconst(&zero, gc.Types[gc.TINT32], 0)
	gins(x86.ACMPL, &hi, &zero)
	splitclean()
	return gc.Gbranch(x86.AJNE, nil, +1)
}
Example #8
0
/*
 * generate high multiply
 *  res = (nl * nr) >> wordsize
 */
func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) {
	if nl.Ullman < nr.Ullman {
		tmp := nl
		nl = nr
		nr = tmp
	}

	t := nl.Type
	w := int(t.Width * 8)
	var n1 gc.Node
	gc.Regalloc(&n1, t, res)
	gc.Cgen(nl, &n1)
	var n2 gc.Node
	gc.Regalloc(&n2, t, nil)
	gc.Cgen(nr, &n2)
	switch gc.Simtype[t.Etype] {
	case gc.TINT8,
		gc.TINT16:
		gins(optoas(gc.OMUL, t), &n2, &n1)
		gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(w), &n1)

	case gc.TUINT8,
		gc.TUINT16:
		gins(optoas(gc.OMUL, t), &n2, &n1)
		gshift(arm.AMOVW, &n1, arm.SHIFT_LR, int32(w), &n1)

		// perform a long multiplication.
	case gc.TINT32,
		gc.TUINT32:
		var p *obj.Prog
		if gc.Issigned[t.Etype] {
			p = gins(arm.AMULL, &n2, nil)
		} else {
			p = gins(arm.AMULLU, &n2, nil)
		}

		// n2 * n1 -> (n1 n2)
		p.Reg = n1.Reg

		p.To.Type = obj.TYPE_REGREG
		p.To.Reg = n1.Reg
		p.To.Offset = int64(n2.Reg)

	default:
		gc.Fatalf("cgen_hmul %v", t)
	}

	gc.Cgen(&n1, res)
	gc.Regfree(&n1)
	gc.Regfree(&n2)
}
Example #9
0
File: gsubr.go Project: sreis/go
func ginscmp(op gc.Op, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
	if gc.Isint[t.Etype] || t.Etype == gc.Tptr {
		if (n1.Op == gc.OLITERAL || n1.Op == gc.OADDR && n1.Left.Op == gc.ONAME) && n2.Op != gc.OLITERAL {
			// Reverse comparison to place constant (including address constant) last.
			op = gc.Brrev(op)
			n1, n2 = n2, n1
		}
	}

	// General case.
	var r1, r2, g1, g2 gc.Node

	// A special case to make write barriers more efficient.
	// Comparing the first field of a named struct can be done directly.
	base := n1
	if n1.Op == gc.ODOT && n1.Left.Type.Etype == gc.TSTRUCT && n1.Left.Type.Type.Sym == n1.Right.Sym {
		base = n1.Left
	}

	if base.Op == gc.ONAME && base.Class&gc.PHEAP == 0 || n1.Op == gc.OINDREG {
		r1 = *n1
	} else {
		gc.Regalloc(&r1, t, n1)
		gc.Regalloc(&g1, n1.Type, &r1)
		gc.Cgen(n1, &g1)
		gmove(&g1, &r1)
	}
	if n2.Op == gc.OLITERAL && gc.Isint[t.Etype] || n2.Op == gc.OADDR && n2.Left.Op == gc.ONAME && n2.Left.Class == gc.PEXTERN {
		r2 = *n2
	} else {
		gc.Regalloc(&r2, t, n2)
		gc.Regalloc(&g2, n1.Type, &r2)
		gc.Cgen(n2, &g2)
		gmove(&g2, &r2)
	}
	gins(optoas(gc.OCMP, t), &r1, &r2)
	if r1.Op == gc.OREGISTER {
		gc.Regfree(&g1)
		gc.Regfree(&r1)
	}
	if r2.Op == gc.OREGISTER {
		gc.Regfree(&g2)
		gc.Regfree(&r2)
	}
	return gc.Gbranch(optoas(op, t), nil, likely)
}
Example #10
0
File: gsubr.go Project: sreis/go
/*
 * n is a 64-bit value.  fill in lo and hi to refer to its 32-bit halves.
 */
func split64(n *gc.Node, lo *gc.Node, hi *gc.Node) {
	if !gc.Is64(n.Type) {
		gc.Fatalf("split64 %v", n.Type)
	}

	if nsclean >= len(sclean) {
		gc.Fatalf("split64 clean")
	}
	sclean[nsclean].Op = gc.OEMPTY
	nsclean++
	switch n.Op {
	default:
		switch n.Op {
		default:
			var n1 gc.Node
			if !dotaddable(n, &n1) {
				gc.Igen(n, &n1, nil)
				sclean[nsclean-1] = n1
			}

			n = &n1

		case gc.ONAME:
			if n.Class == gc.PPARAMREF {
				var n1 gc.Node
				gc.Cgen(n.Name.Heapaddr, &n1)
				sclean[nsclean-1] = n1
				n = &n1
			}

			// nothing
		case gc.OINDREG:
			break
		}

		*lo = *n
		*hi = *n
		lo.Type = gc.Types[gc.TUINT32]
		if n.Type.Etype == gc.TINT64 {
			hi.Type = gc.Types[gc.TINT32]
		} else {
			hi.Type = gc.Types[gc.TUINT32]
		}
		hi.Xoffset += 4

	case gc.OLITERAL:
		var n1 gc.Node
		n.Convconst(&n1, n.Type)
		i := n1.Int()
		gc.Nodconst(lo, gc.Types[gc.TUINT32], int64(uint32(i)))
		i >>= 32
		if n.Type.Etype == gc.TINT64 {
			gc.Nodconst(hi, gc.Types[gc.TINT32], int64(int32(i)))
		} else {
			gc.Nodconst(hi, gc.Types[gc.TUINT32], int64(uint32(i)))
		}
	}
}
Example #11
0
File: ggen.go Project: Samurais/go
/*
 * generate floating-point operation.
 */
func cgen_float(n *gc.Node, res *gc.Node) {
	nl := n.Left
	switch n.Op {
	case gc.OEQ,
		gc.ONE,
		gc.OLT,
		gc.OLE,
		gc.OGE:
		p1 := gc.Gbranch(obj.AJMP, nil, 0)
		p2 := gc.Pc
		gmove(gc.Nodbool(true), res)
		p3 := gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)
		gc.Bgen(n, true, 0, p2)
		gmove(gc.Nodbool(false), res)
		gc.Patch(p3, gc.Pc)
		return

	case gc.OPLUS:
		gc.Cgen(nl, res)
		return

	case gc.OCONV:
		if gc.Eqtype(n.Type, nl.Type) || gc.Noconv(n.Type, nl.Type) {
			gc.Cgen(nl, res)
			return
		}

		var n2 gc.Node
		gc.Tempname(&n2, n.Type)
		var n1 gc.Node
		gc.Mgen(nl, &n1, res)
		gmove(&n1, &n2)
		gmove(&n2, res)
		gc.Mfree(&n1)
		return
	}

	if gc.Thearch.Use387 {
		cgen_float387(n, res)
	} else {
		cgen_floatsse(n, res)
	}
}
Example #12
0
File: gsubr.go Project: Greentor/go
func ginscmp(op gc.Op, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
	if t.IsInteger() && n1.Op == gc.OLITERAL && gc.Smallintconst(n1) && n2.Op != gc.OLITERAL {
		// Reverse comparison to place constant last.
		op = gc.Brrev(op)
		n1, n2 = n2, n1
	}
	// General case.
	var r1, r2, g1, g2 gc.Node

	// A special case to make write barriers more efficient.
	// Comparing the first field of a named struct can be done directly.
	base := n1
	if n1.Op == gc.ODOT && n1.Left.Type.IsStruct() && n1.Left.Type.Field(0).Sym == n1.Sym {
		base = n1.Left
	}

	if base.Op == gc.ONAME && base.Class != gc.PAUTOHEAP || n1.Op == gc.OINDREG {
		r1 = *n1
	} else {
		gc.Regalloc(&r1, t, n1)
		gc.Regalloc(&g1, n1.Type, &r1)
		gc.Cgen(n1, &g1)
		gmove(&g1, &r1)
	}
	if n2.Op == gc.OLITERAL && t.IsInteger() && gc.Smallintconst(n2) {
		r2 = *n2
	} else {
		gc.Regalloc(&r2, t, n2)
		gc.Regalloc(&g2, n1.Type, &r2)
		gc.Cgen(n2, &g2)
		gmove(&g2, &r2)
	}
	gins(optoas(gc.OCMP, t), &r1, &r2)
	if r1.Op == gc.OREGISTER {
		gc.Regfree(&g1)
		gc.Regfree(&r1)
	}
	if r2.Op == gc.OREGISTER {
		gc.Regfree(&g2)
		gc.Regfree(&r2)
	}
	return gc.Gbranch(optoas(op, t), nil, likely)
}
Example #13
0
File: ggen.go Project: Greentor/go
/*
 * generate high multiply:
 *   res = (nl*nr) >> width
 */
func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) {
	// largest ullman on left.
	if nl.Ullman < nr.Ullman {
		nl, nr = nr, nl
	}

	t := nl.Type
	w := t.Width * 8
	var n1 gc.Node
	gc.Cgenr(nl, &n1, res)
	var n2 gc.Node
	gc.Cgenr(nr, &n2, nil)
	switch gc.Simtype[t.Etype] {
	case gc.TINT8,
		gc.TINT16,
		gc.TINT32:
		gins3(optoas(gc.OMUL, t), &n2, &n1, nil)
		var lo gc.Node
		gc.Nodreg(&lo, gc.Types[gc.TUINT64], mips.REG_LO)
		gins(mips.AMOVV, &lo, &n1)
		p := gins(mips.ASRAV, nil, &n1)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = w

	case gc.TUINT8,
		gc.TUINT16,
		gc.TUINT32:
		gins3(optoas(gc.OMUL, t), &n2, &n1, nil)
		var lo gc.Node
		gc.Nodreg(&lo, gc.Types[gc.TUINT64], mips.REG_LO)
		gins(mips.AMOVV, &lo, &n1)
		p := gins(mips.ASRLV, nil, &n1)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = w

	case gc.TINT64,
		gc.TUINT64:
		if t.IsSigned() {
			gins3(mips.AMULV, &n2, &n1, nil)
		} else {
			gins3(mips.AMULVU, &n2, &n1, nil)
		}
		var hi gc.Node
		gc.Nodreg(&hi, gc.Types[gc.TUINT64], mips.REG_HI)
		gins(mips.AMOVV, &hi, &n1)

	default:
		gc.Fatalf("cgen_hmul %v", t)
	}

	gc.Cgen(&n1, res)
	gc.Regfree(&n1)
	gc.Regfree(&n2)
}
Example #14
0
File: ggen.go Project: Samurais/go
// floating-point.  387 (not SSE2)
func cgen_float387(n *gc.Node, res *gc.Node) {
	var f0 gc.Node
	var f1 gc.Node

	nl := n.Left
	nr := n.Right
	gc.Nodreg(&f0, nl.Type, x86.REG_F0)
	gc.Nodreg(&f1, n.Type, x86.REG_F0+1)
	if nr != nil {
		// binary
		if nl.Ullman >= nr.Ullman {
			gc.Cgen(nl, &f0)
			if nr.Addable {
				gins(foptoas(n.Op, n.Type, 0), nr, &f0)
			} else {
				gc.Cgen(nr, &f0)
				gins(foptoas(n.Op, n.Type, Fpop), &f0, &f1)
			}
		} else {
			gc.Cgen(nr, &f0)
			if nl.Addable {
				gins(foptoas(n.Op, n.Type, Frev), nl, &f0)
			} else {
				gc.Cgen(nl, &f0)
				gins(foptoas(n.Op, n.Type, Frev|Fpop), &f0, &f1)
			}
		}

		gmove(&f0, res)
		return
	}

	// unary
	gc.Cgen(nl, &f0)

	if n.Op != gc.OCONV && n.Op != gc.OPLUS {
		gins(foptoas(n.Op, n.Type, 0), nil, nil)
	}
	gmove(&f0, res)
	return
}
Example #15
0
/*
 * generate byte multiply:
 *	res = nl * nr
 * there is no 2-operand byte multiply instruction so
 * we do a full-width multiplication and truncate afterwards.
 */
func cgen_bmul(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) bool {
	if optoas(op, nl.Type) != x86.AIMULB {
		return false
	}

	// largest ullman on left.
	if nl.Ullman < nr.Ullman {
		tmp := nl
		nl = nr
		nr = tmp
	}

	// generate operands in "8-bit" registers.
	var n1b gc.Node
	gc.Regalloc(&n1b, nl.Type, res)

	gc.Cgen(nl, &n1b)
	var n2b gc.Node
	gc.Regalloc(&n2b, nr.Type, nil)
	gc.Cgen(nr, &n2b)

	// perform full-width multiplication.
	t := gc.Types[gc.TUINT64]

	if gc.Issigned[nl.Type.Etype] {
		t = gc.Types[gc.TINT64]
	}
	var n1 gc.Node
	gc.Nodreg(&n1, t, int(n1b.Reg))
	var n2 gc.Node
	gc.Nodreg(&n2, t, int(n2b.Reg))
	a := optoas(op, t)
	gins(a, &n2, &n1)

	// truncate.
	gmove(&n1, res)

	gc.Regfree(&n1b)
	gc.Regfree(&n2b)
	return true
}
Example #16
0
File: ggen.go Project: gmwu/go
/*
 * generate high multiply:
 *   res = (nl*nr) >> width
 */
func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) {
	var n1 gc.Node
	var n2 gc.Node
	var ax gc.Node
	var dx gc.Node

	t := nl.Type
	a := optoas(gc.OHMUL, t)

	// gen nl in n1.
	gc.Tempname(&n1, t)

	gc.Cgen(nl, &n1)

	// gen nr in n2.
	gc.Regalloc(&n2, t, res)

	gc.Cgen(nr, &n2)

	// multiply.
	gc.Nodreg(&ax, t, x86.REG_AX)

	gmove(&n2, &ax)
	gins(a, &n1, nil)
	gc.Regfree(&n2)

	if t.Width == 1 {
		// byte multiply behaves differently.
		gc.Nodreg(&ax, t, x86.REG_AH)

		gc.Nodreg(&dx, t, x86.REG_DX)
		gmove(&ax, &dx)
	}

	gc.Nodreg(&dx, t, x86.REG_DX)
	gmove(&dx, res)
}
Example #17
0
File: ggen.go Project: Samurais/go
/*
 * generate high multiply:
 *   res = (nl*nr) >> width
 */
func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) {
	var n1 gc.Node
	var n2 gc.Node

	t := nl.Type
	a := optoas(gc.OHMUL, t)

	// gen nl in n1.
	gc.Tempname(&n1, t)
	gc.Cgen(nl, &n1)

	// gen nr in n2.
	gc.Regalloc(&n2, t, res)
	gc.Cgen(nr, &n2)

	var ax, oldax, dx, olddx gc.Node
	savex(x86.REG_AX, &ax, &oldax, res, gc.Types[gc.TUINT32])
	savex(x86.REG_DX, &dx, &olddx, res, gc.Types[gc.TUINT32])

	gmove(&n2, &ax)
	gins(a, &n1, nil)
	gc.Regfree(&n2)

	if t.Width == 1 {
		// byte multiply behaves differently.
		var byteAH, byteDX gc.Node
		gc.Nodreg(&byteAH, t, x86.REG_AH)
		gc.Nodreg(&byteDX, t, x86.REG_DX)
		gmove(&byteAH, &byteDX)
	}

	gmove(&dx, res)

	restx(&ax, &oldax)
	restx(&dx, &olddx)
}
Example #18
0
File: ggen.go Project: Ericean/go
/*
 * generate high multiply:
 *   res = (nl*nr) >> width
 */
func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) {
	// largest ullman on left.
	if nl.Ullman < nr.Ullman {
		tmp := (*gc.Node)(nl)
		nl = nr
		nr = tmp
	}

	t := (*gc.Type)(nl.Type)
	w := int(int(t.Width * 8))
	var n1 gc.Node
	gc.Cgenr(nl, &n1, res)
	var n2 gc.Node
	gc.Cgenr(nr, &n2, nil)
	switch gc.Simtype[t.Etype] {
	case gc.TINT8,
		gc.TINT16,
		gc.TINT32:
		gins(optoas(gc.OMUL, t), &n2, &n1)
		p := (*obj.Prog)(gins(ppc64.ASRAD, nil, &n1))
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(w)

	case gc.TUINT8,
		gc.TUINT16,
		gc.TUINT32:
		gins(optoas(gc.OMUL, t), &n2, &n1)
		p := (*obj.Prog)(gins(ppc64.ASRD, nil, &n1))
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(w)

	case gc.TINT64,
		gc.TUINT64:
		if gc.Issigned[t.Etype] {
			gins(ppc64.AMULHD, &n2, &n1)
		} else {
			gins(ppc64.AMULHDU, &n2, &n1)
		}

	default:
		gc.Fatal("cgen_hmul %v", t)
	}

	gc.Cgen(&n1, res)
	gc.Regfree(&n1)
	gc.Regfree(&n2)
}
Example #19
0
/*
 * generate high multiply:
 *   res = (nl*nr) >> width
 */
func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) {
	// largest ullman on left.
	if nl.Ullman < nr.Ullman {
		nl, nr = nr, nl
	}

	t := nl.Type
	w := t.Width * 8
	var n1 gc.Node
	gc.Cgenr(nl, &n1, res)
	var n2 gc.Node
	gc.Cgenr(nr, &n2, nil)
	switch gc.Simtype[t.Etype] {
	case gc.TINT8,
		gc.TINT16,
		gc.TINT32:
		gins(optoas(gc.OMUL, t), &n2, &n1)
		p := gins(arm64.AASR, nil, &n1)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = w

	case gc.TUINT8,
		gc.TUINT16,
		gc.TUINT32:
		gins(optoas(gc.OMUL, t), &n2, &n1)
		p := gins(arm64.ALSR, nil, &n1)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = w

	case gc.TINT64,
		gc.TUINT64:
		if gc.Issigned[t.Etype] {
			gins(arm64.ASMULH, &n2, &n1)
		} else {
			gins(arm64.AUMULH, &n2, &n1)
		}

	default:
		gc.Fatalf("cgen_hmul %v", t)
	}

	gc.Cgen(&n1, res)
	gc.Regfree(&n1)
	gc.Regfree(&n2)
}
Example #20
0
File: ggen.go Project: 2thetop/go
/*
 * generate high multiply:
 *   res = (nl*nr) >> width
 */
func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) {
	// largest ullman on left.
	if nl.Ullman < nr.Ullman {
		nl, nr = nr, nl
	}

	t := nl.Type
	w := int(t.Width) * 8
	var n1 gc.Node
	gc.Cgenr(nl, &n1, res)
	var n2 gc.Node
	gc.Cgenr(nr, &n2, nil)
	switch gc.Simtype[t.Etype] {
	case gc.TINT8,
		gc.TINT16,
		gc.TINT32:
		gins(optoas(gc.OMUL, t), &n2, &n1)
		p := gins(s390x.ASRAD, nil, &n1)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(w)

	case gc.TUINT8,
		gc.TUINT16,
		gc.TUINT32:
		gins(optoas(gc.OMUL, t), &n2, &n1)
		p := gins(s390x.ASRD, nil, &n1)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(w)

	case gc.TINT64:
		gins(s390x.AMULHD, &n2, &n1)

	case gc.TUINT64:
		gins(s390x.AMULHDU, &n2, &n1)

	default:
		gc.Fatalf("cgen_hmul %v", t)
	}

	gc.Cgen(&n1, res)
	gc.Regfree(&n1)
	gc.Regfree(&n2)
}
Example #21
0
File: ggen.go Project: Ericean/go
/*
 * generate shift according to op, one of:
 *	res = nl << nr
 *	res = nl >> nr
 */
func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	a := int(optoas(op, nl.Type))

	if nr.Op == gc.OLITERAL {
		var n1 gc.Node
		gc.Regalloc(&n1, nl.Type, res)
		gc.Cgen(nl, &n1)
		sc := uint64(nr.Int())
		if sc >= uint64(nl.Type.Width*8) {
			// large shift gets 2 shifts by width-1
			var n3 gc.Node
			gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)

			gins(a, &n3, &n1)
			gins(a, &n3, &n1)
		} else {
			gins(a, nr, &n1)
		}
		gmove(&n1, res)
		gc.Regfree(&n1)
		return
	}

	if nl.Ullman >= gc.UINF {
		var n4 gc.Node
		gc.Tempname(&n4, nl.Type)
		gc.Cgen(nl, &n4)
		nl = &n4
	}

	if nr.Ullman >= gc.UINF {
		var n5 gc.Node
		gc.Tempname(&n5, nr.Type)
		gc.Cgen(nr, &n5)
		nr = &n5
	}

	// Allow either uint32 or uint64 as shift type,
	// to avoid unnecessary conversion from uint32 to uint64
	// just to do the comparison.
	tcount := gc.Types[gc.Simtype[nr.Type.Etype]]

	if tcount.Etype < gc.TUINT32 {
		tcount = gc.Types[gc.TUINT32]
	}

	var n1 gc.Node
	gc.Regalloc(&n1, nr.Type, nil) // to hold the shift type in CX
	var n3 gc.Node
	gc.Regalloc(&n3, tcount, &n1) // to clear high bits of CX

	var n2 gc.Node
	gc.Regalloc(&n2, nl.Type, res)

	if nl.Ullman >= nr.Ullman {
		gc.Cgen(nl, &n2)
		gc.Cgen(nr, &n1)
		gmove(&n1, &n3)
	} else {
		gc.Cgen(nr, &n1)
		gmove(&n1, &n3)
		gc.Cgen(nl, &n2)
	}

	gc.Regfree(&n3)

	// test and fix up large shifts
	if !bounded {
		gc.Nodconst(&n3, tcount, nl.Type.Width*8)
		gins(optoas(gc.OCMP, tcount), &n1, &n3)
		p1 := (*obj.Prog)(gc.Gbranch(optoas(gc.OLT, tcount), nil, +1))
		if op == gc.ORSH && gc.Issigned[nl.Type.Etype] {
			gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)
			gins(a, &n3, &n2)
		} else {
			gc.Nodconst(&n3, nl.Type, 0)
			gmove(&n3, &n2)
		}

		gc.Patch(p1, gc.Pc)
	}

	gins(a, &n1, &n2)

	gmove(&n2, res)

	gc.Regfree(&n1)
	gc.Regfree(&n2)
}
Example #22
0
File: ggen.go Project: Ericean/go
/*
 * generate division.
 * generates one of:
 *	res = nl / nr
 *	res = nl % nr
 * according to op.
 */
func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	// Have to be careful about handling
	// most negative int divided by -1 correctly.
	// The hardware will generate undefined result.
	// Also need to explicitly trap on division on zero,
	// the hardware will silently generate undefined result.
	// DIVW will leave unpredicable result in higher 32-bit,
	// so always use DIVD/DIVDU.
	t := nl.Type

	t0 := t
	check := 0
	if gc.Issigned[t.Etype] {
		check = 1
		if gc.Isconst(nl, gc.CTINT) && nl.Int() != -(1<<uint64(t.Width*8-1)) {
			check = 0
		} else if gc.Isconst(nr, gc.CTINT) && nr.Int() != -1 {
			check = 0
		}
	}

	if t.Width < 8 {
		if gc.Issigned[t.Etype] {
			t = gc.Types[gc.TINT64]
		} else {
			t = gc.Types[gc.TUINT64]
		}
		check = 0
	}

	a := optoas(gc.ODIV, t)

	var tl gc.Node
	gc.Regalloc(&tl, t0, nil)
	var tr gc.Node
	gc.Regalloc(&tr, t0, nil)
	if nl.Ullman >= nr.Ullman {
		gc.Cgen(nl, &tl)
		gc.Cgen(nr, &tr)
	} else {
		gc.Cgen(nr, &tr)
		gc.Cgen(nl, &tl)
	}

	if t != t0 {
		// Convert
		tl2 := tl

		tr2 := tr
		tl.Type = t
		tr.Type = t
		gmove(&tl2, &tl)
		gmove(&tr2, &tr)
	}

	// Handle divide-by-zero panic.
	p1 := gins(optoas(gc.OCMP, t), &tr, nil)

	p1.To.Type = obj.TYPE_REG
	p1.To.Reg = ppc64.REGZERO
	p1 = gc.Gbranch(optoas(gc.ONE, t), nil, +1)
	if panicdiv == nil {
		panicdiv = gc.Sysfunc("panicdivide")
	}
	gc.Ginscall(panicdiv, -1)
	gc.Patch(p1, gc.Pc)

	var p2 *obj.Prog
	if check != 0 {
		var nm1 gc.Node
		gc.Nodconst(&nm1, t, -1)
		gins(optoas(gc.OCMP, t), &tr, &nm1)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if op == gc.ODIV {
			// a / (-1) is -a.
			gins(optoas(gc.OMINUS, t), nil, &tl)

			gmove(&tl, res)
		} else {
			// a % (-1) is 0.
			var nz gc.Node
			gc.Nodconst(&nz, t, 0)

			gmove(&nz, res)
		}

		p2 = gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)
	}

	p1 = gins(a, &tr, &tl)
	if op == gc.ODIV {
		gc.Regfree(&tr)
		gmove(&tl, res)
	} else {
		// A%B = A-(A/B*B)
		var tm gc.Node
		gc.Regalloc(&tm, t, nil)

		// patch div to use the 3 register form
		// TODO(minux): add gins3?
		p1.Reg = p1.To.Reg

		p1.To.Reg = tm.Reg
		gins(optoas(gc.OMUL, t), &tr, &tm)
		gc.Regfree(&tr)
		gins(optoas(gc.OSUB, t), &tm, &tl)
		gc.Regfree(&tm)
		gmove(&tl, res)
	}

	gc.Regfree(&tl)
	if check != 0 {
		gc.Patch(p2, gc.Pc)
	}
}
Example #23
0
/*
 * generate division.
 * generates one of:
 *	res = nl / nr
 *	res = nl % nr
 * according to op.
 */
func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	// Have to be careful about handling
	// most negative int divided by -1 correctly.
	// The hardware will trap.
	// Also the byte divide instruction needs AH,
	// which we otherwise don't have to deal with.
	// Easiest way to avoid for int8, int16: use int32.
	// For int32 and int64, use explicit test.
	// Could use int64 hw for int32.
	t := nl.Type

	t0 := t
	check := 0
	if gc.Issigned[t.Etype] {
		check = 1
		if gc.Isconst(nl, gc.CTINT) && nl.Int() != -(1<<uint64(t.Width*8-1)) {
			check = 0
		} else if gc.Isconst(nr, gc.CTINT) && nr.Int() != -1 {
			check = 0
		}
	}

	if t.Width < 4 {
		if gc.Issigned[t.Etype] {
			t = gc.Types[gc.TINT32]
		} else {
			t = gc.Types[gc.TUINT32]
		}
		check = 0
	}

	a := optoas(op, t)

	var n3 gc.Node
	gc.Regalloc(&n3, t0, nil)
	var ax gc.Node
	var oldax gc.Node
	if nl.Ullman >= nr.Ullman {
		savex(x86.REG_AX, &ax, &oldax, res, t0)
		gc.Cgen(nl, &ax)
		gc.Regalloc(&ax, t0, &ax) // mark ax live during cgen
		gc.Cgen(nr, &n3)
		gc.Regfree(&ax)
	} else {
		gc.Cgen(nr, &n3)
		savex(x86.REG_AX, &ax, &oldax, res, t0)
		gc.Cgen(nl, &ax)
	}

	if t != t0 {
		// Convert
		ax1 := ax

		n31 := n3
		ax.Type = t
		n3.Type = t
		gmove(&ax1, &ax)
		gmove(&n31, &n3)
	}

	var n4 gc.Node
	if gc.Nacl {
		// Native Client does not relay the divide-by-zero trap
		// to the executing program, so we must insert a check
		// for ourselves.
		gc.Nodconst(&n4, t, 0)

		gins(optoas(gc.OCMP, t), &n3, &n4)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if panicdiv == nil {
			panicdiv = gc.Sysfunc("panicdivide")
		}
		gc.Ginscall(panicdiv, -1)
		gc.Patch(p1, gc.Pc)
	}

	var p2 *obj.Prog
	if check != 0 {
		gc.Nodconst(&n4, t, -1)
		gins(optoas(gc.OCMP, t), &n3, &n4)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if op == gc.ODIV {
			// a / (-1) is -a.
			gins(optoas(gc.OMINUS, t), nil, &ax)

			gmove(&ax, res)
		} else {
			// a % (-1) is 0.
			gc.Nodconst(&n4, t, 0)

			gmove(&n4, res)
		}

		p2 = gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)
	}

	var olddx gc.Node
	var dx gc.Node
	savex(x86.REG_DX, &dx, &olddx, res, t)
	if !gc.Issigned[t.Etype] {
		gc.Nodconst(&n4, t, 0)
		gmove(&n4, &dx)
	} else {
		gins(optoas(gc.OEXTEND, t), nil, nil)
	}
	gins(a, &n3, nil)
	gc.Regfree(&n3)
	if op == gc.ODIV {
		gmove(&ax, res)
	} else {
		gmove(&dx, res)
	}
	restx(&dx, &olddx)
	if check != 0 {
		gc.Patch(p2, gc.Pc)
	}
	restx(&ax, &oldax)
}
Example #24
0
File: cgen64.go Project: sreis/go
/*
 * attempt to generate 64-bit
 *	res = n
 * return 1 on success, 0 if op not handled.
 */
func cgen64(n *gc.Node, res *gc.Node) {
	if res.Op != gc.OINDREG && res.Op != gc.ONAME {
		gc.Dump("n", n)
		gc.Dump("res", res)
		gc.Fatalf("cgen64 %v of %v", gc.Oconv(int(n.Op), 0), gc.Oconv(int(res.Op), 0))
	}

	switch n.Op {
	default:
		gc.Fatalf("cgen64 %v", gc.Oconv(int(n.Op), 0))

	case gc.OMINUS:
		gc.Cgen(n.Left, res)
		var hi1 gc.Node
		var lo1 gc.Node
		split64(res, &lo1, &hi1)
		gins(x86.ANEGL, nil, &lo1)
		gins(x86.AADCL, ncon(0), &hi1)
		gins(x86.ANEGL, nil, &hi1)
		splitclean()
		return

	case gc.OCOM:
		gc.Cgen(n.Left, res)
		var lo1 gc.Node
		var hi1 gc.Node
		split64(res, &lo1, &hi1)
		gins(x86.ANOTL, nil, &lo1)
		gins(x86.ANOTL, nil, &hi1)
		splitclean()
		return

		// binary operators.
	// common setup below.
	case gc.OADD,
		gc.OSUB,
		gc.OMUL,
		gc.OLROT,
		gc.OLSH,
		gc.ORSH,
		gc.OAND,
		gc.OOR,
		gc.OXOR:
		break
	}

	l := n.Left
	r := n.Right
	if !l.Addable {
		var t1 gc.Node
		gc.Tempname(&t1, l.Type)
		gc.Cgen(l, &t1)
		l = &t1
	}

	if r != nil && !r.Addable {
		var t2 gc.Node
		gc.Tempname(&t2, r.Type)
		gc.Cgen(r, &t2)
		r = &t2
	}

	var ax gc.Node
	gc.Nodreg(&ax, gc.Types[gc.TINT32], x86.REG_AX)
	var cx gc.Node
	gc.Nodreg(&cx, gc.Types[gc.TINT32], x86.REG_CX)
	var dx gc.Node
	gc.Nodreg(&dx, gc.Types[gc.TINT32], x86.REG_DX)

	// Setup for binary operation.
	var hi1 gc.Node
	var lo1 gc.Node
	split64(l, &lo1, &hi1)

	var lo2 gc.Node
	var hi2 gc.Node
	if gc.Is64(r.Type) {
		split64(r, &lo2, &hi2)
	}

	// Do op. Leave result in DX:AX.
	switch n.Op {
	// TODO: Constants
	case gc.OADD:
		gins(x86.AMOVL, &lo1, &ax)

		gins(x86.AMOVL, &hi1, &dx)
		gins(x86.AADDL, &lo2, &ax)
		gins(x86.AADCL, &hi2, &dx)

		// TODO: Constants.
	case gc.OSUB:
		gins(x86.AMOVL, &lo1, &ax)

		gins(x86.AMOVL, &hi1, &dx)
		gins(x86.ASUBL, &lo2, &ax)
		gins(x86.ASBBL, &hi2, &dx)

	case gc.OMUL:
		// let's call the next three EX, FX and GX
		var ex, fx, gx gc.Node
		gc.Regalloc(&ex, gc.Types[gc.TPTR32], nil)
		gc.Regalloc(&fx, gc.Types[gc.TPTR32], nil)
		gc.Regalloc(&gx, gc.Types[gc.TPTR32], nil)

		// load args into DX:AX and EX:GX.
		gins(x86.AMOVL, &lo1, &ax)

		gins(x86.AMOVL, &hi1, &dx)
		gins(x86.AMOVL, &lo2, &gx)
		gins(x86.AMOVL, &hi2, &ex)

		// if DX and EX are zero, use 32 x 32 -> 64 unsigned multiply.
		gins(x86.AMOVL, &dx, &fx)

		gins(x86.AORL, &ex, &fx)
		p1 := gc.Gbranch(x86.AJNE, nil, 0)
		gins(x86.AMULL, &gx, nil) // implicit &ax
		p2 := gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)

		// full 64x64 -> 64, from 32x32 -> 64.
		gins(x86.AIMULL, &gx, &dx)

		gins(x86.AMOVL, &ax, &fx)
		gins(x86.AIMULL, &ex, &fx)
		gins(x86.AADDL, &dx, &fx)
		gins(x86.AMOVL, &gx, &dx)
		gins(x86.AMULL, &dx, nil) // implicit &ax
		gins(x86.AADDL, &fx, &dx)
		gc.Patch(p2, gc.Pc)

		gc.Regfree(&ex)
		gc.Regfree(&fx)
		gc.Regfree(&gx)

	// We only rotate by a constant c in [0,64).
	// if c >= 32:
	//	lo, hi = hi, lo
	//	c -= 32
	// if c == 0:
	//	no-op
	// else:
	//	t = hi
	//	shld hi:lo, c
	//	shld lo:t, c
	case gc.OLROT:
		v := uint64(r.Int())

		if v >= 32 {
			// reverse during load to do the first 32 bits of rotate
			v -= 32

			gins(x86.AMOVL, &lo1, &dx)
			gins(x86.AMOVL, &hi1, &ax)
		} else {
			gins(x86.AMOVL, &lo1, &ax)
			gins(x86.AMOVL, &hi1, &dx)
		}

		if v == 0 {
		} else // done
		{
			gins(x86.AMOVL, &dx, &cx)
			p1 := gins(x86.ASHLL, ncon(uint32(v)), &dx)
			p1.From.Index = x86.REG_AX // double-width shift
			p1.From.Scale = 0
			p1 = gins(x86.ASHLL, ncon(uint32(v)), &ax)
			p1.From.Index = x86.REG_CX // double-width shift
			p1.From.Scale = 0
		}

	case gc.OLSH:
		if r.Op == gc.OLITERAL {
			v := uint64(r.Int())
			if v >= 64 {
				if gc.Is64(r.Type) {
					splitclean()
				}
				splitclean()
				split64(res, &lo2, &hi2)
				gins(x86.AMOVL, ncon(0), &lo2)
				gins(x86.AMOVL, ncon(0), &hi2)
				splitclean()
				return
			}

			if v >= 32 {
				if gc.Is64(r.Type) {
					splitclean()
				}
				split64(res, &lo2, &hi2)
				gmove(&lo1, &hi2)
				if v > 32 {
					gins(x86.ASHLL, ncon(uint32(v-32)), &hi2)
				}

				gins(x86.AMOVL, ncon(0), &lo2)
				splitclean()
				splitclean()
				return
			}

			// general shift
			gins(x86.AMOVL, &lo1, &ax)

			gins(x86.AMOVL, &hi1, &dx)
			p1 := gins(x86.ASHLL, ncon(uint32(v)), &dx)
			p1.From.Index = x86.REG_AX // double-width shift
			p1.From.Scale = 0
			gins(x86.ASHLL, ncon(uint32(v)), &ax)
			break
		}

		// load value into DX:AX.
		gins(x86.AMOVL, &lo1, &ax)

		gins(x86.AMOVL, &hi1, &dx)

		// load shift value into register.
		// if high bits are set, zero value.
		var p1 *obj.Prog

		if gc.Is64(r.Type) {
			gins(x86.ACMPL, &hi2, ncon(0))
			p1 = gc.Gbranch(x86.AJNE, nil, +1)
			gins(x86.AMOVL, &lo2, &cx)
		} else {
			cx.Type = gc.Types[gc.TUINT32]
			gmove(r, &cx)
		}

		// if shift count is >=64, zero value
		gins(x86.ACMPL, &cx, ncon(64))

		p2 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1)
		if p1 != nil {
			gc.Patch(p1, gc.Pc)
		}
		gins(x86.AXORL, &dx, &dx)
		gins(x86.AXORL, &ax, &ax)
		gc.Patch(p2, gc.Pc)

		// if shift count is >= 32, zero low.
		gins(x86.ACMPL, &cx, ncon(32))

		p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1)
		gins(x86.AMOVL, &ax, &dx)
		gins(x86.ASHLL, &cx, &dx) // SHLL only uses bottom 5 bits of count
		gins(x86.AXORL, &ax, &ax)
		p2 = gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)

		// general shift
		p1 = gins(x86.ASHLL, &cx, &dx)

		p1.From.Index = x86.REG_AX // double-width shift
		p1.From.Scale = 0
		gins(x86.ASHLL, &cx, &ax)
		gc.Patch(p2, gc.Pc)

	case gc.ORSH:
		if r.Op == gc.OLITERAL {
			v := uint64(r.Int())
			if v >= 64 {
				if gc.Is64(r.Type) {
					splitclean()
				}
				splitclean()
				split64(res, &lo2, &hi2)
				if hi1.Type.Etype == gc.TINT32 {
					gmove(&hi1, &lo2)
					gins(x86.ASARL, ncon(31), &lo2)
					gmove(&hi1, &hi2)
					gins(x86.ASARL, ncon(31), &hi2)
				} else {
					gins(x86.AMOVL, ncon(0), &lo2)
					gins(x86.AMOVL, ncon(0), &hi2)
				}

				splitclean()
				return
			}

			if v >= 32 {
				if gc.Is64(r.Type) {
					splitclean()
				}
				split64(res, &lo2, &hi2)
				gmove(&hi1, &lo2)
				if v > 32 {
					gins(optoas(gc.ORSH, hi1.Type), ncon(uint32(v-32)), &lo2)
				}
				if hi1.Type.Etype == gc.TINT32 {
					gmove(&hi1, &hi2)
					gins(x86.ASARL, ncon(31), &hi2)
				} else {
					gins(x86.AMOVL, ncon(0), &hi2)
				}
				splitclean()
				splitclean()
				return
			}

			// general shift
			gins(x86.AMOVL, &lo1, &ax)

			gins(x86.AMOVL, &hi1, &dx)
			p1 := gins(x86.ASHRL, ncon(uint32(v)), &ax)
			p1.From.Index = x86.REG_DX // double-width shift
			p1.From.Scale = 0
			gins(optoas(gc.ORSH, hi1.Type), ncon(uint32(v)), &dx)
			break
		}

		// load value into DX:AX.
		gins(x86.AMOVL, &lo1, &ax)

		gins(x86.AMOVL, &hi1, &dx)

		// load shift value into register.
		// if high bits are set, zero value.
		var p1 *obj.Prog

		if gc.Is64(r.Type) {
			gins(x86.ACMPL, &hi2, ncon(0))
			p1 = gc.Gbranch(x86.AJNE, nil, +1)
			gins(x86.AMOVL, &lo2, &cx)
		} else {
			cx.Type = gc.Types[gc.TUINT32]
			gmove(r, &cx)
		}

		// if shift count is >=64, zero or sign-extend value
		gins(x86.ACMPL, &cx, ncon(64))

		p2 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1)
		if p1 != nil {
			gc.Patch(p1, gc.Pc)
		}
		if hi1.Type.Etype == gc.TINT32 {
			gins(x86.ASARL, ncon(31), &dx)
			gins(x86.AMOVL, &dx, &ax)
		} else {
			gins(x86.AXORL, &dx, &dx)
			gins(x86.AXORL, &ax, &ax)
		}

		gc.Patch(p2, gc.Pc)

		// if shift count is >= 32, sign-extend hi.
		gins(x86.ACMPL, &cx, ncon(32))

		p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1)
		gins(x86.AMOVL, &dx, &ax)
		if hi1.Type.Etype == gc.TINT32 {
			gins(x86.ASARL, &cx, &ax) // SARL only uses bottom 5 bits of count
			gins(x86.ASARL, ncon(31), &dx)
		} else {
			gins(x86.ASHRL, &cx, &ax)
			gins(x86.AXORL, &dx, &dx)
		}

		p2 = gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)

		// general shift
		p1 = gins(x86.ASHRL, &cx, &ax)

		p1.From.Index = x86.REG_DX // double-width shift
		p1.From.Scale = 0
		gins(optoas(gc.ORSH, hi1.Type), &cx, &dx)
		gc.Patch(p2, gc.Pc)

		// make constant the right side (it usually is anyway).
	case gc.OXOR,
		gc.OAND,
		gc.OOR:
		if lo1.Op == gc.OLITERAL {
			nswap(&lo1, &lo2)
			nswap(&hi1, &hi2)
		}

		if lo2.Op == gc.OLITERAL {
			// special cases for constants.
			lv := uint32(lo2.Int())
			hv := uint32(hi2.Int())
			splitclean() // right side
			split64(res, &lo2, &hi2)
			switch n.Op {
			case gc.OXOR:
				gmove(&lo1, &lo2)
				gmove(&hi1, &hi2)
				switch lv {
				case 0:
					break

				case 0xffffffff:
					gins(x86.ANOTL, nil, &lo2)

				default:
					gins(x86.AXORL, ncon(lv), &lo2)
				}

				switch hv {
				case 0:
					break

				case 0xffffffff:
					gins(x86.ANOTL, nil, &hi2)

				default:
					gins(x86.AXORL, ncon(hv), &hi2)
				}

			case gc.OAND:
				switch lv {
				case 0:
					gins(x86.AMOVL, ncon(0), &lo2)

				default:
					gmove(&lo1, &lo2)
					if lv != 0xffffffff {
						gins(x86.AANDL, ncon(lv), &lo2)
					}
				}

				switch hv {
				case 0:
					gins(x86.AMOVL, ncon(0), &hi2)

				default:
					gmove(&hi1, &hi2)
					if hv != 0xffffffff {
						gins(x86.AANDL, ncon(hv), &hi2)
					}
				}

			case gc.OOR:
				switch lv {
				case 0:
					gmove(&lo1, &lo2)

				case 0xffffffff:
					gins(x86.AMOVL, ncon(0xffffffff), &lo2)

				default:
					gmove(&lo1, &lo2)
					gins(x86.AORL, ncon(lv), &lo2)
				}

				switch hv {
				case 0:
					gmove(&hi1, &hi2)

				case 0xffffffff:
					gins(x86.AMOVL, ncon(0xffffffff), &hi2)

				default:
					gmove(&hi1, &hi2)
					gins(x86.AORL, ncon(hv), &hi2)
				}
			}

			splitclean()
			splitclean()
			return
		}

		gins(x86.AMOVL, &lo1, &ax)
		gins(x86.AMOVL, &hi1, &dx)
		gins(optoas(n.Op, lo1.Type), &lo2, &ax)
		gins(optoas(n.Op, lo1.Type), &hi2, &dx)
	}

	if gc.Is64(r.Type) {
		splitclean()
	}
	splitclean()

	split64(res, &lo1, &hi1)
	gins(x86.AMOVL, &ax, &lo1)
	gins(x86.AMOVL, &dx, &hi1)
	splitclean()
}
Example #25
0
File: ggen.go Project: arnold8/go
/*
 * generate shift according to op, one of:
 *	res = nl << nr
 *	res = nl >> nr
 */
func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	if nl.Type.Width > 4 {
		gc.Fatalf("cgen_shift %v", nl.Type)
	}

	w := int(nl.Type.Width * 8)

	if op == gc.OLROT {
		v := nr.Int()
		var n1 gc.Node
		gc.Regalloc(&n1, nl.Type, res)
		if w == 32 {
			gc.Cgen(nl, &n1)
			gshift(arm.AMOVW, &n1, arm.SHIFT_RR, int32(w)-int32(v), &n1)
		} else {
			var n2 gc.Node
			gc.Regalloc(&n2, nl.Type, nil)
			gc.Cgen(nl, &n2)
			gshift(arm.AMOVW, &n2, arm.SHIFT_LL, int32(v), &n1)
			gshift(arm.AORR, &n2, arm.SHIFT_LR, int32(w)-int32(v), &n1)
			gc.Regfree(&n2)

			// Ensure sign/zero-extended result.
			gins(optoas(gc.OAS, nl.Type), &n1, &n1)
		}

		gmove(&n1, res)
		gc.Regfree(&n1)
		return
	}

	if nr.Op == gc.OLITERAL {
		var n1 gc.Node
		gc.Regalloc(&n1, nl.Type, res)
		gc.Cgen(nl, &n1)
		sc := uint64(nr.Int())
		if sc == 0 {
		} else // nothing to do
		if sc >= uint64(nl.Type.Width*8) {
			if op == gc.ORSH && gc.Issigned[nl.Type.Etype] {
				gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(w), &n1)
			} else {
				gins(arm.AEOR, &n1, &n1)
			}
		} else {
			if op == gc.ORSH && gc.Issigned[nl.Type.Etype] {
				gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(sc), &n1)
			} else if op == gc.ORSH {
				gshift(arm.AMOVW, &n1, arm.SHIFT_LR, int32(sc), &n1) // OLSH
			} else {
				gshift(arm.AMOVW, &n1, arm.SHIFT_LL, int32(sc), &n1)
			}
		}

		if w < 32 && op == gc.OLSH {
			gins(optoas(gc.OAS, nl.Type), &n1, &n1)
		}
		gmove(&n1, res)
		gc.Regfree(&n1)
		return
	}

	tr := nr.Type
	var t gc.Node
	var n1 gc.Node
	var n2 gc.Node
	var n3 gc.Node
	if tr.Width > 4 {
		var nt gc.Node
		gc.Tempname(&nt, nr.Type)
		if nl.Ullman >= nr.Ullman {
			gc.Regalloc(&n2, nl.Type, res)
			gc.Cgen(nl, &n2)
			gc.Cgen(nr, &nt)
			n1 = nt
		} else {
			gc.Cgen(nr, &nt)
			gc.Regalloc(&n2, nl.Type, res)
			gc.Cgen(nl, &n2)
		}

		var hi gc.Node
		var lo gc.Node
		split64(&nt, &lo, &hi)
		gc.Regalloc(&n1, gc.Types[gc.TUINT32], nil)
		gc.Regalloc(&n3, gc.Types[gc.TUINT32], nil)
		gmove(&lo, &n1)
		gmove(&hi, &n3)
		splitclean()
		gins(arm.ATST, &n3, nil)
		gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w))
		p1 := gins(arm.AMOVW, &t, &n1)
		p1.Scond = arm.C_SCOND_NE
		tr = gc.Types[gc.TUINT32]
		gc.Regfree(&n3)
	} else {
		if nl.Ullman >= nr.Ullman {
			gc.Regalloc(&n2, nl.Type, res)
			gc.Cgen(nl, &n2)
			gc.Regalloc(&n1, nr.Type, nil)
			gc.Cgen(nr, &n1)
		} else {
			gc.Regalloc(&n1, nr.Type, nil)
			gc.Cgen(nr, &n1)
			gc.Regalloc(&n2, nl.Type, res)
			gc.Cgen(nl, &n2)
		}
	}

	// test for shift being 0
	gins(arm.ATST, &n1, nil)

	p3 := gc.Gbranch(arm.ABEQ, nil, -1)

	// test and fix up large shifts
	// TODO: if(!bounded), don't emit some of this.
	gc.Regalloc(&n3, tr, nil)

	gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w))
	gmove(&t, &n3)
	gins(arm.ACMP, &n1, &n3)
	if op == gc.ORSH {
		var p1 *obj.Prog
		var p2 *obj.Prog
		if gc.Issigned[nl.Type.Etype] {
			p1 = gshift(arm.AMOVW, &n2, arm.SHIFT_AR, int32(w)-1, &n2)
			p2 = gregshift(arm.AMOVW, &n2, arm.SHIFT_AR, &n1, &n2)
		} else {
			p1 = gins(arm.AEOR, &n2, &n2)
			p2 = gregshift(arm.AMOVW, &n2, arm.SHIFT_LR, &n1, &n2)
		}

		p1.Scond = arm.C_SCOND_HS
		p2.Scond = arm.C_SCOND_LO
	} else {
		p1 := gins(arm.AEOR, &n2, &n2)
		p2 := gregshift(arm.AMOVW, &n2, arm.SHIFT_LL, &n1, &n2)
		p1.Scond = arm.C_SCOND_HS
		p2.Scond = arm.C_SCOND_LO
	}

	gc.Regfree(&n3)

	gc.Patch(p3, gc.Pc)

	// Left-shift of smaller word must be sign/zero-extended.
	if w < 32 && op == gc.OLSH {
		gins(optoas(gc.OAS, nl.Type), &n2, &n2)
	}
	gmove(&n2, res)

	gc.Regfree(&n1)
	gc.Regfree(&n2)
}
Example #26
0
File: ggen.go Project: arnold8/go
func clearfat(nl *gc.Node) {
	/* clear a fat object */
	if gc.Debug['g'] != 0 {
		gc.Dump("\nclearfat", nl)
	}

	w := uint32(nl.Type.Width)

	// Avoid taking the address for simple enough types.
	if gc.Componentgen(nil, nl) {
		return
	}

	c := w % 4 // bytes
	q := w / 4 // quads

	var r0 gc.Node
	r0.Op = gc.OREGISTER

	r0.Reg = arm.REG_R0
	var r1 gc.Node
	r1.Op = gc.OREGISTER
	r1.Reg = arm.REG_R1
	var dst gc.Node
	gc.Regalloc(&dst, gc.Types[gc.Tptr], &r1)
	gc.Agen(nl, &dst)
	var nc gc.Node
	gc.Nodconst(&nc, gc.Types[gc.TUINT32], 0)
	var nz gc.Node
	gc.Regalloc(&nz, gc.Types[gc.TUINT32], &r0)
	gc.Cgen(&nc, &nz)

	if q > 128 {
		var end gc.Node
		gc.Regalloc(&end, gc.Types[gc.Tptr], nil)
		p := gins(arm.AMOVW, &dst, &end)
		p.From.Type = obj.TYPE_ADDR
		p.From.Offset = int64(q) * 4

		p = gins(arm.AMOVW, &nz, &dst)
		p.To.Type = obj.TYPE_MEM
		p.To.Offset = 4
		p.Scond |= arm.C_PBIT
		pl := p

		p = gins(arm.ACMP, &dst, nil)
		raddr(&end, p)
		gc.Patch(gc.Gbranch(arm.ABNE, nil, 0), pl)

		gc.Regfree(&end)
	} else if q >= 4 && !gc.Nacl {
		f := gc.Sysfunc("duffzero")
		p := gins(obj.ADUFFZERO, nil, f)
		gc.Afunclit(&p.To, f)

		// 4 and 128 = magic constants: see ../../runtime/asm_arm.s
		p.To.Offset = 4 * (128 - int64(q))
	} else {
		var p *obj.Prog
		for q > 0 {
			p = gins(arm.AMOVW, &nz, &dst)
			p.To.Type = obj.TYPE_MEM
			p.To.Offset = 4
			p.Scond |= arm.C_PBIT

			//print("1. %v\n", p);
			q--
		}
	}

	var p *obj.Prog
	for c > 0 {
		p = gins(arm.AMOVB, &nz, &dst)
		p.To.Type = obj.TYPE_MEM
		p.To.Offset = 1
		p.Scond |= arm.C_PBIT

		//print("2. %v\n", p);
		c--
	}

	gc.Regfree(&dst)
	gc.Regfree(&nz)
}
Example #27
0
File: ggen.go Project: Samurais/go
/*
 * generate division.
 * caller must set:
 *	ax = allocated AX register
 *	dx = allocated DX register
 * generates one of:
 *	res = nl / nr
 *	res = nl % nr
 * according to op.
 */
func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node, ax *gc.Node, dx *gc.Node) {
	// Have to be careful about handling
	// most negative int divided by -1 correctly.
	// The hardware will trap.
	// Also the byte divide instruction needs AH,
	// which we otherwise don't have to deal with.
	// Easiest way to avoid for int8, int16: use int32.
	// For int32 and int64, use explicit test.
	// Could use int64 hw for int32.
	t := nl.Type

	t0 := t
	check := false
	if gc.Issigned[t.Etype] {
		check = true
		if gc.Isconst(nl, gc.CTINT) && nl.Int() != -1<<uint64(t.Width*8-1) {
			check = false
		} else if gc.Isconst(nr, gc.CTINT) && nr.Int() != -1 {
			check = false
		}
	}

	if t.Width < 4 {
		if gc.Issigned[t.Etype] {
			t = gc.Types[gc.TINT32]
		} else {
			t = gc.Types[gc.TUINT32]
		}
		check = false
	}

	var t1 gc.Node
	gc.Tempname(&t1, t)
	var t2 gc.Node
	gc.Tempname(&t2, t)
	if t0 != t {
		var t3 gc.Node
		gc.Tempname(&t3, t0)
		var t4 gc.Node
		gc.Tempname(&t4, t0)
		gc.Cgen(nl, &t3)
		gc.Cgen(nr, &t4)

		// Convert.
		gmove(&t3, &t1)

		gmove(&t4, &t2)
	} else {
		gc.Cgen(nl, &t1)
		gc.Cgen(nr, &t2)
	}

	var n1 gc.Node
	if !gc.Samereg(ax, res) && !gc.Samereg(dx, res) {
		gc.Regalloc(&n1, t, res)
	} else {
		gc.Regalloc(&n1, t, nil)
	}
	gmove(&t2, &n1)
	gmove(&t1, ax)
	var p2 *obj.Prog
	var n4 gc.Node
	if gc.Nacl {
		// Native Client does not relay the divide-by-zero trap
		// to the executing program, so we must insert a check
		// for ourselves.
		gc.Nodconst(&n4, t, 0)

		gins(optoas(gc.OCMP, t), &n1, &n4)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if panicdiv == nil {
			panicdiv = gc.Sysfunc("panicdivide")
		}
		gc.Ginscall(panicdiv, -1)
		gc.Patch(p1, gc.Pc)
	}

	if check {
		gc.Nodconst(&n4, t, -1)
		gins(optoas(gc.OCMP, t), &n1, &n4)
		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
		if op == gc.ODIV {
			// a / (-1) is -a.
			gins(optoas(gc.OMINUS, t), nil, ax)

			gmove(ax, res)
		} else {
			// a % (-1) is 0.
			gc.Nodconst(&n4, t, 0)

			gmove(&n4, res)
		}

		p2 = gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)
	}

	if !gc.Issigned[t.Etype] {
		var nz gc.Node
		gc.Nodconst(&nz, t, 0)
		gmove(&nz, dx)
	} else {
		gins(optoas(gc.OEXTEND, t), nil, nil)
	}
	gins(optoas(op, t), &n1, nil)
	gc.Regfree(&n1)

	if op == gc.ODIV {
		gmove(ax, res)
	} else {
		gmove(dx, res)
	}
	if check {
		gc.Patch(p2, gc.Pc)
	}
}
Example #28
0
File: ggen.go Project: Samurais/go
func bgen_float(n *gc.Node, wantTrue bool, likely int, to *obj.Prog) {
	nl := n.Left
	nr := n.Right
	op := n.Op
	if !wantTrue {
		// brcom is not valid on floats when NaN is involved.
		p1 := gc.Gbranch(obj.AJMP, nil, 0)
		p2 := gc.Gbranch(obj.AJMP, nil, 0)
		gc.Patch(p1, gc.Pc)

		// No need to avoid re-genning ninit.
		bgen_float(n, true, -likely, p2)

		gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to)
		gc.Patch(p2, gc.Pc)
		return
	}

	if gc.Thearch.Use387 {
		op = gc.Brrev(op) // because the args are stacked
		if op == gc.OGE || op == gc.OGT {
			// only < and <= work right with NaN; reverse if needed
			nl, nr = nr, nl
			op = gc.Brrev(op)
		}

		var ax, n2, tmp gc.Node
		gc.Nodreg(&tmp, nr.Type, x86.REG_F0)
		gc.Nodreg(&n2, nr.Type, x86.REG_F0+1)
		gc.Nodreg(&ax, gc.Types[gc.TUINT16], x86.REG_AX)
		if gc.Simsimtype(nr.Type) == gc.TFLOAT64 {
			if nl.Ullman > nr.Ullman {
				gc.Cgen(nl, &tmp)
				gc.Cgen(nr, &tmp)
				gins(x86.AFXCHD, &tmp, &n2)
			} else {
				gc.Cgen(nr, &tmp)
				gc.Cgen(nl, &tmp)
			}
			gins(x86.AFUCOMPP, &tmp, &n2)
		} else {
			// TODO(rsc): The moves back and forth to memory
			// here are for truncating the value to 32 bits.
			// This handles 32-bit comparison but presumably
			// all the other ops have the same problem.
			// We need to figure out what the right general
			// solution is, besides telling people to use float64.
			var t1 gc.Node
			gc.Tempname(&t1, gc.Types[gc.TFLOAT32])

			var t2 gc.Node
			gc.Tempname(&t2, gc.Types[gc.TFLOAT32])
			gc.Cgen(nr, &t1)
			gc.Cgen(nl, &t2)
			gmove(&t2, &tmp)
			gins(x86.AFCOMFP, &t1, &tmp)
		}
		gins(x86.AFSTSW, nil, &ax)
		gins(x86.ASAHF, nil, nil)
	} else {
		// Not 387
		if !nl.Addable {
			nl = gc.CgenTemp(nl)
		}
		if !nr.Addable {
			nr = gc.CgenTemp(nr)
		}

		var n2 gc.Node
		gc.Regalloc(&n2, nr.Type, nil)
		gmove(nr, &n2)
		nr = &n2

		if nl.Op != gc.OREGISTER {
			var n3 gc.Node
			gc.Regalloc(&n3, nl.Type, nil)
			gmove(nl, &n3)
			nl = &n3
		}

		if op == gc.OGE || op == gc.OGT {
			// only < and <= work right with NopN; reverse if needed
			nl, nr = nr, nl
			op = gc.Brrev(op)
		}

		gins(foptoas(gc.OCMP, nr.Type, 0), nl, nr)
		if nl.Op == gc.OREGISTER {
			gc.Regfree(nl)
		}
		gc.Regfree(nr)
	}

	switch op {
	case gc.OEQ:
		// neither NE nor P
		p1 := gc.Gbranch(x86.AJNE, nil, -likely)
		p2 := gc.Gbranch(x86.AJPS, nil, -likely)
		gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to)
		gc.Patch(p1, gc.Pc)
		gc.Patch(p2, gc.Pc)
	case gc.ONE:
		// either NE or P
		gc.Patch(gc.Gbranch(x86.AJNE, nil, likely), to)
		gc.Patch(gc.Gbranch(x86.AJPS, nil, likely), to)
	default:
		gc.Patch(gc.Gbranch(optoas(op, nr.Type), nil, likely), to)
	}
}
Example #29
0
File: ggen.go Project: Samurais/go
func cgen_floatsse(n *gc.Node, res *gc.Node) {
	var a obj.As

	nl := n.Left
	nr := n.Right
	switch n.Op {
	default:
		gc.Dump("cgen_floatsse", n)
		gc.Fatalf("cgen_floatsse %v", gc.Oconv(n.Op, 0))
		return

	case gc.OMINUS,
		gc.OCOM:
		nr = gc.Nodintconst(-1)
		gc.Convlit(&nr, n.Type)
		a = foptoas(gc.OMUL, nl.Type, 0)
		goto sbop

		// symmetric binary
	case gc.OADD,
		gc.OMUL:
		a = foptoas(n.Op, nl.Type, 0)

		goto sbop

		// asymmetric binary
	case gc.OSUB,
		gc.OMOD,
		gc.ODIV:
		a = foptoas(n.Op, nl.Type, 0)

		goto abop
	}

sbop: // symmetric binary
	if nl.Ullman < nr.Ullman || nl.Op == gc.OLITERAL {
		nl, nr = nr, nl
	}

abop: // asymmetric binary
	if nl.Ullman >= nr.Ullman {
		var nt gc.Node
		gc.Tempname(&nt, nl.Type)
		gc.Cgen(nl, &nt)
		var n2 gc.Node
		gc.Mgen(nr, &n2, nil)
		var n1 gc.Node
		gc.Regalloc(&n1, nl.Type, res)
		gmove(&nt, &n1)
		gins(a, &n2, &n1)
		gmove(&n1, res)
		gc.Regfree(&n1)
		gc.Mfree(&n2)
	} else {
		var n2 gc.Node
		gc.Regalloc(&n2, nr.Type, res)
		gc.Cgen(nr, &n2)
		var n1 gc.Node
		gc.Regalloc(&n1, nl.Type, nil)
		gc.Cgen(nl, &n1)
		gins(a, &n2, &n1)
		gc.Regfree(&n2)
		gmove(&n1, res)
		gc.Regfree(&n1)
	}

	return
}
Example #30
0
File: ggen.go Project: Samurais/go
/*
 * generate shift according to op, one of:
 *	res = nl << nr
 *	res = nl >> nr
 */
func cgen_shift(op gc.Op, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) {
	if nl.Type.Width > 4 {
		gc.Fatalf("cgen_shift %v", nl.Type)
	}

	w := int(nl.Type.Width * 8)

	a := optoas(op, nl.Type)

	if nr.Op == gc.OLITERAL {
		var n2 gc.Node
		gc.Tempname(&n2, nl.Type)
		gc.Cgen(nl, &n2)
		var n1 gc.Node
		gc.Regalloc(&n1, nl.Type, res)
		gmove(&n2, &n1)
		sc := uint64(nr.Int())
		if sc >= uint64(nl.Type.Width*8) {
			// large shift gets 2 shifts by width-1
			gins(a, ncon(uint32(w)-1), &n1)

			gins(a, ncon(uint32(w)-1), &n1)
		} else {
			gins(a, nr, &n1)
		}
		gmove(&n1, res)
		gc.Regfree(&n1)
		return
	}

	var oldcx gc.Node
	var cx gc.Node
	gc.Nodreg(&cx, gc.Types[gc.TUINT32], x86.REG_CX)
	if gc.GetReg(x86.REG_CX) > 1 && !gc.Samereg(&cx, res) {
		gc.Tempname(&oldcx, gc.Types[gc.TUINT32])
		gmove(&cx, &oldcx)
	}

	var n1 gc.Node
	var nt gc.Node
	if nr.Type.Width > 4 {
		gc.Tempname(&nt, nr.Type)
		n1 = nt
	} else {
		gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX)
		gc.Regalloc(&n1, nr.Type, &n1) // to hold the shift type in CX
	}

	var n2 gc.Node
	if gc.Samereg(&cx, res) {
		gc.Regalloc(&n2, nl.Type, nil)
	} else {
		gc.Regalloc(&n2, nl.Type, res)
	}
	if nl.Ullman >= nr.Ullman {
		gc.Cgen(nl, &n2)
		gc.Cgen(nr, &n1)
	} else {
		gc.Cgen(nr, &n1)
		gc.Cgen(nl, &n2)
	}

	// test and fix up large shifts
	if bounded {
		if nr.Type.Width > 4 {
			// delayed reg alloc
			gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX)

			gc.Regalloc(&n1, gc.Types[gc.TUINT32], &n1) // to hold the shift type in CX
			var lo gc.Node
			var hi gc.Node
			split64(&nt, &lo, &hi)
			gmove(&lo, &n1)
			splitclean()
		}
	} else {
		var p1 *obj.Prog
		if nr.Type.Width > 4 {
			// delayed reg alloc
			gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX)

			gc.Regalloc(&n1, gc.Types[gc.TUINT32], &n1) // to hold the shift type in CX
			var lo gc.Node
			var hi gc.Node
			split64(&nt, &lo, &hi)
			gmove(&lo, &n1)
			gins(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &hi, ncon(0))
			p2 := gc.Gbranch(optoas(gc.ONE, gc.Types[gc.TUINT32]), nil, +1)
			gins(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &n1, ncon(uint32(w)))
			p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1)
			splitclean()
			gc.Patch(p2, gc.Pc)
		} else {
			gins(optoas(gc.OCMP, nr.Type), &n1, ncon(uint32(w)))
			p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1)
		}

		if op == gc.ORSH && gc.Issigned[nl.Type.Etype] {
			gins(a, ncon(uint32(w)-1), &n2)
		} else {
			gmove(ncon(0), &n2)
		}

		gc.Patch(p1, gc.Pc)
	}

	gins(a, &n1, &n2)

	if oldcx.Op != 0 {
		gmove(&oldcx, &cx)
	}

	gmove(&n2, res)

	gc.Regfree(&n1)
	gc.Regfree(&n2)
}