// PlotYxe plots the function y(x) implemented by Cb_yxe func PlotYxe(ffcn Cb_yxe, dirout, fname string, xsol, xa, xb float64, np int, xsolLbl, args string, save, show bool, extra func()) (err error) { if !save && !show { return } x := utl.LinSpace(xa, xb, np) y := make([]float64, np) for i := 0; i < np; i++ { y[i], err = ffcn(x[i]) if err != nil { return } } var ysol float64 ysol, err = ffcn(xsol) if err != nil { return } plt.Cross("") plt.Plot(x, y, args) plt.PlotOne(xsol, ysol, io.Sf("'ro', label='%s'", xsolLbl)) if extra != nil { extra() } plt.Gll("x", "y(x)", "") if save { os.MkdirAll(dirout, 0777) plt.Save(dirout + "/" + fname) } if show { plt.Show() } return }
// PlotEnd ends plot and show figure, if show==true func PlotEnd(show bool) { plt.AxisYrange(0, 1) plt.Cross("") plt.Gll("$p_c$", "$s_{\\ell}$", "") if show { plt.Show() } }
// PlotTwoVarsContour plots contour for two variables problem. len(x) == 2 // Input // dirout -- directory to save files // fnkey -- file name key for eps figure // x -- solution. can be <nil> // np -- number of points for contour // extra -- called just before saving figure // axequal -- axis.equal // vmin -- min 0 values // vmax -- max 1 values // f -- function to plot filled contour. can be <nil> // gs -- functions to plot contour @ level 0. can be <nil> func PlotTwoVarsContour(dirout, fnkey string, x []float64, np int, extra func(), axequal bool, vmin, vmax []float64, f TwoVarsFunc_t, gs ...TwoVarsFunc_t) { if fnkey == "" { return } chk.IntAssert(len(vmin), 2) chk.IntAssert(len(vmax), 2) V0, V1 := utl.MeshGrid2D(vmin[0], vmax[0], vmin[1], vmax[1], np, np) var Zf [][]float64 var Zg [][][]float64 if f != nil { Zf = la.MatAlloc(np, np) } if len(gs) > 0 { Zg = utl.Deep3alloc(len(gs), np, np) } xtmp := make([]float64, 2) for i := 0; i < np; i++ { for j := 0; j < np; j++ { xtmp[0], xtmp[1] = V0[i][j], V1[i][j] if f != nil { Zf[i][j] = f(xtmp) } for k, g := range gs { Zg[k][i][j] = g(xtmp) } } } plt.Reset() plt.SetForEps(0.8, 350) if f != nil { cmapidx := 0 plt.Contour(V0, V1, Zf, io.Sf("fsz=7, cmapidx=%d", cmapidx)) } for k, _ := range gs { plt.ContourSimple(V0, V1, Zg[k], false, 8, "zorder=5, levels=[0], colors=['yellow'], linewidths=[2], clip_on=0") } if x != nil { plt.PlotOne(x[0], x[1], "'r*', label='optimum', zorder=10") } if extra != nil { extra() } if dirout == "" { dirout = "." } plt.Cross("clr='grey'") plt.SetXnticks(11) plt.SetYnticks(11) if axequal { plt.Equal() } plt.AxisRange(vmin[0], vmax[0], vmin[1], vmax[1]) args := "leg_out='1', leg_ncol=4, leg_hlen=1.5" plt.Gll("$x_0$", "$x_1$", args) plt.SaveD(dirout, fnkey+".eps") }
func Test_cubiceq03(tst *testing.T) { //verbose() chk.PrintTitle("cubiceq03. y(x) = x³ + c") doplot := false np := 41 var X, Y []float64 if doplot { X = utl.LinSpace(-2, 2, np) Y = make([]float64, np) plt.SetForPng(0.8, 400, 200) } a, b := 0.0, 0.0 colors := []string{"red", "green", "blue"} for k, c := range []float64{-1, 0, 1} { x1, x2, x3, nx := EqCubicSolveReal(a, b, c) io.Pforan("\na=%v b=%v c=%v\n", a, b, c) io.Pfcyan("nx=%v\n", nx) io.Pfcyan("x1=%v x2=%v x3=%v\n", x1, x2, x3) chk.IntAssert(nx, 1) chk.Scalar(tst, "x1", 1e-17, x1, -c) if doplot { for i, x := range X { Y[i] = x*x*x + a*x*x + b*x + c } plt.Plot(X, Y, io.Sf("color='%s', label='c=%g'", colors[k], c)) plt.PlotOne(x1, 0, io.Sf("'ko', color='%s'", colors[k])) plt.Cross("") plt.Gll("x", "y", "") } } if doplot { plt.SaveD("/tmp", "fig_cubiceq03.png") } }
func main() { // input data simfn := "elast.sim" matname := "lrm1" pcmax := 30.0 npts := 101 // parse flags flag.Parse() if len(flag.Args()) > 0 { simfn = flag.Arg(0) } if len(flag.Args()) > 1 { matname = flag.Arg(1) } if len(flag.Args()) > 2 { pcmax = io.Atof(flag.Arg(2)) } if len(flag.Args()) > 3 { npts = io.Atoi(flag.Arg(3)) } // check extension if io.FnExt(simfn) == "" { simfn += ".sim" } // print input data io.Pf("\nInput data\n") io.Pf("==========\n") io.Pf(" simfn = %30s // simulation filename\n", simfn) io.Pf(" matname = %30s // material name\n", matname) io.Pf(" pcmax = %30v // max pc\n", pcmax) io.Pf(" npts = %30v // number of points\n", npts) io.Pf("\n") // load simulation sim := inp.ReadSim("", simfn, "lrm_", false) if sim == nil { io.PfRed("cannot load simulation\n") return } // get material data mat := sim.Mdb.Get(matname) if mat == nil { io.PfRed("cannot get material\n") return } io.Pforan("mat = %v\n", mat) // get and initialise model mdl := mreten.GetModel(simfn, matname, mat.Model, false) if mdl == nil { io.PfRed("cannot allocate model\n") return } mdl.Init(mat.Prms) // plot drying path d_Pc := utl.LinSpace(0, pcmax, npts) d_Sl := make([]float64, npts) d_Sl[0] = 1 var err error for i := 1; i < npts; i++ { d_Sl[i], err = mreten.Update(mdl, d_Pc[i-1], d_Sl[i-1], d_Pc[i]-d_Pc[i-1]) if err != nil { io.PfRed("drying: cannot updated model\n%v\n", err) return } } plt.Plot(d_Pc, d_Sl, io.Sf("'b-', label='%s (dry)', clip_on=0", matname)) // plot wetting path w_Pc := utl.LinSpace(pcmax, 0, npts) w_Sl := make([]float64, npts) w_Sl[0] = d_Sl[npts-1] for i := 1; i < npts; i++ { w_Sl[i], err = mreten.Update(mdl, w_Pc[i-1], w_Sl[i-1], w_Pc[i]-w_Pc[i-1]) if err != nil { io.PfRed("wetting: cannot updated model\n%v\n", err) return } } plt.Plot(w_Pc, w_Sl, io.Sf("'c-', label='%s (wet)', clip_on=0", matname)) // save results type Results struct{ Pc, Sl []float64 } res := Results{append(d_Pc, w_Pc...), append(d_Sl, w_Sl...)} var buf bytes.Buffer enc := json.NewEncoder(&buf) err = enc.Encode(&res) if err != nil { io.PfRed("cannot encode results\n") return } fn := path.Join(sim.Data.DirOut, matname+".dat") io.WriteFile(fn, &buf) io.Pf("file <[1;34m%s[0m> written\n", fn) // show figure plt.AxisYrange(0, 1) plt.Cross() plt.Gll("$p_c$", "$s_{\\ell}$", "") plt.Show() }
// Run computes β starting witn an initial guess func (o *ReliabFORM) Run(βtrial float64, verbose bool, args ...interface{}) (β float64, μ, σ, x []float64) { // initial random variables β = βtrial nx := len(o.μ) μ = make([]float64, nx) // mean values (equivalent normal value) σ = make([]float64, nx) // deviation values (equivalent normal value) x = make([]float64, nx) // current vector of random variables defining min(β) for i := 0; i < nx; i++ { μ[i] = o.μ[i] σ[i] = o.σ[i] x[i] = o.μ[i] } // lognormal distribution structure var lnd DistLogNormal // has lognormal random variable? haslrv := false for _, found := range o.lrv { if found { haslrv = true break } } // function to compute β with x-constant // gβ(β) = g(μ - β・A・σ) = 0 var err error gβfcn := func(fy, y []float64) error { βtmp := y[0] for i := 0; i < nx; i++ { o.xtmp[i] = μ[i] - βtmp*o.α[i]*σ[i] } fy[0], err = o.gfcn(o.xtmp, args) if err != nil { chk.Panic("cannot compute gfcn(%v):\n%v", o.xtmp, err) } return nil } // derivative of gβ w.r.t β hβfcn := func(dfdy [][]float64, y []float64) error { βtmp := y[0] for i := 0; i < nx; i++ { o.xtmp[i] = μ[i] - βtmp*o.α[i]*σ[i] } err = o.hfcn(o.dgdx, o.xtmp, args) if err != nil { chk.Panic("cannot compute hfcn(%v):\n%v", o.xtmp, err) } dfdy[0][0] = 0 for i := 0; i < nx; i++ { dfdy[0][0] -= o.dgdx[i] * o.α[i] * σ[i] } return nil } // nonlinear solver with y[0] = β // solving: gβ(β) = g(μ - β・A・σ) = 0 var nls num.NlSolver nls.Init(1, gβfcn, nil, hβfcn, true, false, nil) defer nls.Clean() // message if verbose { io.Pf("\n%s", io.StrThickLine(60)) } // plotting plot := o.PlotFnk != "" if nx != 2 { plot = false } if plot { if o.PlotNp < 3 { o.PlotNp = 41 } var umin, umax, vmin, vmax float64 if o.PlotCf < 1 { o.PlotCf = 2 } if len(o.PlotUrange) == 0 { umin, umax = μ[0]-o.PlotCf*μ[0], μ[0]+o.PlotCf*μ[0] vmin, vmax = μ[1]-o.PlotCf*μ[1], μ[1]+o.PlotCf*μ[1] } else { chk.IntAssert(len(o.PlotUrange), 2) chk.IntAssert(len(o.PlotVrange), 2) umin, umax = o.PlotUrange[0], o.PlotUrange[1] vmin, vmax = o.PlotVrange[0], o.PlotVrange[1] } o.PlotU, o.PlotV = utl.MeshGrid2D(umin, umax, vmin, vmax, o.PlotNp, o.PlotNp) o.PlotZ = la.MatAlloc(o.PlotNp, o.PlotNp) plt.SetForEps(0.8, 300) for i := 0; i < o.PlotNp; i++ { for j := 0; j < o.PlotNp; j++ { o.xtmp[0] = o.PlotU[i][j] o.xtmp[1] = o.PlotV[i][j] o.PlotZ[i][j], err = o.gfcn(o.xtmp, args) if err != nil { chk.Panic("cannot compute gfcn(%v):\n%v", x, err) } } } plt.Contour(o.PlotU, o.PlotV, o.PlotZ, "") plt.ContourSimple(o.PlotU, o.PlotV, o.PlotZ, true, 8, "levels=[0], colors=['yellow']") plt.PlotOne(x[0], x[1], "'ro', label='initial'") } // iterations to find β var dat VarData B := []float64{β} itB := 0 for itB = 0; itB < o.NmaxItB; itB++ { // message if verbose { gx, err := o.gfcn(x, args) if err != nil { chk.Panic("cannot compute gfcn(%v):\n%v", x, err) } io.Pf("%s itB=%d β=%g g=%g\n", io.StrThinLine(60), itB, β, gx) } // plot if plot { plt.PlotOne(x[0], x[1], "'r.'") } // compute direction cosines itA := 0 for itA = 0; itA < o.NmaxItA; itA++ { // has lognormal random variable (lrv) if haslrv { // find equivalent normal mean and std deviation for lognormal variables for i := 0; i < nx; i++ { if o.lrv[i] { // set distribution dat.M, dat.S = o.μ[i], o.σ[i] lnd.Init(&dat) // update μ and σ fx := lnd.Pdf(x[i]) Φinvx := (math.Log(x[i]) - lnd.M) / lnd.S φx := math.Exp(-Φinvx*Φinvx/2.0) / math.Sqrt2 / math.SqrtPi σ[i] = φx / fx μ[i] = x[i] - Φinvx*σ[i] } } } // compute direction cosines err = o.hfcn(o.dgdx, x, args) if err != nil { chk.Panic("cannot compute hfcn(%v):\n%v", x, err) } den := 0.0 for i := 0; i < nx; i++ { den += math.Pow(o.dgdx[i]*σ[i], 2.0) } den = math.Sqrt(den) αerr := 0.0 // difference on α for i := 0; i < nx; i++ { αnew := o.dgdx[i] * σ[i] / den αerr += math.Pow(αnew-o.α[i], 2.0) o.α[i] = αnew } αerr = math.Sqrt(αerr) // message if verbose { io.Pf(" itA=%d\n", itA) io.Pf("%12s%12s%12s%12s\n", "x", "μ", "σ", "α") for i := 0; i < nx; i++ { io.Pf("%12.3f%12.3f%12.3f%12.3f\n", x[i], μ[i], σ[i], o.α[i]) } } // update x-star for i := 0; i < nx; i++ { x[i] = μ[i] - β*o.α[i]*σ[i] } // check convergence on α if itA > 1 && αerr < o.TolA { if verbose { io.Pfgrey(". . . converged on α with αerr=%g . . .\n", αerr) } break } } // failed to converge on α if itA == o.NmaxItA { chk.Panic("failed to convege on α") } // compute new β B[0] = β nls.Solve(B, o.NlsSilent) βerr := math.Abs(B[0] - β) β = B[0] if o.NlsCheckJ { nls.CheckJ(B, o.NlsCheckJtol, true, false) } // update x-star for i := 0; i < nx; i++ { x[i] = μ[i] - β*o.α[i]*σ[i] } // check convergence on β if βerr < o.TolB { if verbose { io.Pfgrey2(". . . converged on β with βerr=%g . . .\n", βerr) } break } } // failed to converge on β if itB == o.NmaxItB { chk.Panic("failed to converge on β") } // message if verbose { gx, err := o.gfcn(x, args) if err != nil { chk.Panic("cannot compute gfcn(%v):\n%v", x, err) } io.Pfgreen("x = %v\n", x) io.Pfgreen("g = %v\n", gx) io.PfGreen("β = %v\n", β) } // plot if plot { plt.Gll("$x_0$", "$x_1$", "") plt.Cross("") plt.SaveD("/tmp/gosl", "fig_form_"+o.PlotFnk+".eps") } return }
// Plot plots contour func (o *SimpleFltProb) Plot(fnkey string) { // check if !o.C.DoPlot { return } // limits and meshgrid xmin, xmax := o.C.RangeFlt[0][0], o.C.RangeFlt[0][1] ymin, ymax := o.C.RangeFlt[1][0], o.C.RangeFlt[1][1] // auxiliary variables X, Y := utl.MeshGrid2D(xmin, xmax, ymin, ymax, o.PltNpts, o.PltNpts) Zf := utl.DblsAlloc(o.PltNpts, o.PltNpts) var Zg [][][]float64 var Zh [][][]float64 if o.ng > 0 { Zg = utl.Deep3alloc(o.ng, o.PltNpts, o.PltNpts) } if o.nh > 0 { Zh = utl.Deep3alloc(o.nh, o.PltNpts, o.PltNpts) } // compute values x := make([]float64, 2) for i := 0; i < o.PltNpts; i++ { for j := 0; j < o.PltNpts; j++ { x[0], x[1] = X[i][j], Y[i][j] o.Fcn(o.ff[0], o.gg[0], o.hh[0], x) Zf[i][j] = o.ff[0][o.PltIdxF] for k, g := range o.gg[0] { Zg[k][i][j] = g } for k, h := range o.hh[0] { Zh[k][i][j] = h } } } // prepare plot area plt.Reset() plt.SetForEps(0.8, 350) // plot f if o.PltArgs != "" { o.PltArgs = "," + o.PltArgs } if o.PltCsimple { plt.ContourSimple(X, Y, Zf, true, 7, "colors=['k'], fsz=7"+o.PltArgs) } else { plt.Contour(X, Y, Zf, io.Sf("fsz=7, cmapidx=%d"+o.PltArgs, o.PltCmapIdx)) } // plot g clr := "yellow" if o.PltCsimple { clr = "blue" } for _, g := range Zg { plt.ContourSimple(X, Y, g, false, 7, io.Sf("zorder=5, levels=[0], colors=['%s'], linewidths=[%g], clip_on=0", clr, o.PltLwg)) } // plot h clr = "yellow" if o.PltCsimple { clr = "blue" } for _, h := range Zh { plt.ContourSimple(X, Y, h, false, 7, io.Sf("zorder=5, levels=[0], colors=['%s'], linewidths=[%g], clip_on=0", clr, o.PltLwh)) } // initial populations l := "initial population" for _, pop := range o.PopsIni { for _, ind := range pop { x := ind.GetFloats() plt.PlotOne(x[0], x[1], io.Sf("'k.', zorder=20, clip_on=0, label='%s'", l)) l = "" } } // final populations l = "final population" for _, pop := range o.PopsBest { for _, ind := range pop { x := ind.GetFloats() plt.PlotOne(x[0], x[1], io.Sf("'ko', ms=6, zorder=30, clip_on=0, label='%s', markerfacecolor='none'", l)) l = "" } } // extra if o.PltExtra != nil { o.PltExtra() } // best result if o.Nfeasible > 0 { x, _, _, _ := o.find_best() plt.PlotOne(x[0], x[1], "'m*', zorder=50, clip_on=0, label='best', markeredgecolor='m'") } // save figure plt.Cross("clr='grey'") if o.PltAxEqual { plt.Equal() } plt.AxisRange(xmin, xmax, ymin, ymax) plt.Gll("$x_0$", "$x_1$", "leg_out=1, leg_ncol=4, leg_hlen=1.5") plt.SaveD(o.PltDirout, fnkey+".eps") }
func main() { // catch errors defer func() { if err := recover(); err != nil { io.PfRed("ERROR: %v\n", err) } }() // input data simfn, _ := io.ArgToFilename(0, "elast", ".sim", true) matname := io.ArgToString(1, "lrm1") pcmax := io.ArgToFloat(2, 30.0) npts := io.ArgToInt(3, 101) // print input table io.Pf("\n%s\n", io.ArgsTable( "simulation filename", "simfn", simfn, "material name", "matname", matname, "max pc", "pcmax", pcmax, "number of points", "npts", npts, )) // load simulation sim := inp.ReadSim(simfn, "lrm", false, 0) if sim == nil { io.PfRed("cannot load simulation\n") return } // get material data mat := sim.MatParams.Get(matname) if mat == nil { io.PfRed("cannot get material\n") return } io.Pforan("mat = %v\n", mat) // get and initialise model mdl := mreten.GetModel(simfn, matname, mat.Model, false) if mdl == nil { io.PfRed("cannot allocate model\n") return } mdl.Init(mat.Prms) // plot drying path d_Pc := utl.LinSpace(0, pcmax, npts) d_Sl := make([]float64, npts) d_Sl[0] = 1 var err error for i := 1; i < npts; i++ { d_Sl[i], err = mreten.Update(mdl, d_Pc[i-1], d_Sl[i-1], d_Pc[i]-d_Pc[i-1]) if err != nil { io.PfRed("drying: cannot updated model\n%v\n", err) return } } plt.Plot(d_Pc, d_Sl, io.Sf("'b-', label='%s (dry)', clip_on=0", matname)) // plot wetting path w_Pc := utl.LinSpace(pcmax, 0, npts) w_Sl := make([]float64, npts) w_Sl[0] = d_Sl[npts-1] for i := 1; i < npts; i++ { w_Sl[i], err = mreten.Update(mdl, w_Pc[i-1], w_Sl[i-1], w_Pc[i]-w_Pc[i-1]) if err != nil { io.PfRed("wetting: cannot updated model\n%v\n", err) return } } plt.Plot(w_Pc, w_Sl, io.Sf("'c-', label='%s (wet)', clip_on=0", matname)) // save results type Results struct{ Pc, Sl []float64 } res := Results{append(d_Pc, w_Pc...), append(d_Sl, w_Sl...)} var buf bytes.Buffer enc := json.NewEncoder(&buf) err = enc.Encode(&res) if err != nil { io.PfRed("cannot encode results\n") return } fn := path.Join(sim.Data.DirOut, matname+".dat") io.WriteFile(fn, &buf) io.Pf("file <[1;34m%s[0m> written\n", fn) // show figure plt.AxisYrange(0, 1) plt.Cross("") plt.Gll("$p_c$", "$s_{\\ell}$", "") plt.Show() }