// createVarRefIterator creates an iterator for a variable reference. func (e *Engine) createVarRefIterator(opt influxql.IteratorOptions) ([]influxql.Iterator, error) { ref, _ := opt.Expr.(*influxql.VarRef) var itrs []influxql.Iterator if err := func() error { mms := tsdb.Measurements(e.index.MeasurementsByName(influxql.Sources(opt.Sources).Names())) // Retrieve the maximum number of fields (without time). conditionFields := make([]string, len(influxql.ExprNames(opt.Condition))) for _, mm := range mms { // Determine tagsets for this measurement based on dimensions and filters. tagSets, err := mm.TagSets(opt.Dimensions, opt.Condition) if err != nil { return err } // Calculate tag sets and apply SLIMIT/SOFFSET. tagSets = influxql.LimitTagSets(tagSets, opt.SLimit, opt.SOffset) for _, t := range tagSets { for i, seriesKey := range t.SeriesKeys { fields := 0 if t.Filters[i] != nil { // Retrieve non-time fields from this series filter and filter out tags. for _, f := range influxql.ExprNames(t.Filters[i]) { if mm.HasField(f) { conditionFields[fields] = f fields++ } } } itr, err := e.createVarRefSeriesIterator(ref, mm, seriesKey, t, t.Filters[i], conditionFields[:fields], opt) if err != nil { return err } else if itr == nil { continue } itrs = append(itrs, itr) } } } return nil }(); err != nil { influxql.Iterators(itrs).Close() return nil, err } return itrs, nil }
// ReadAll reads all points from all iterators. func (itrs Iterators) ReadAll() [][]influxql.Point { var a [][]influxql.Point // Read from every iterator until a nil is encountered. for { points := itrs.Next() if points == nil { break } a = append(a, points) } // Close all iterators. influxql.Iterators(itrs).Close() return a }
func (e *QueryExecutor) executeSelectStatement(stmt *influxql.SelectStatement, chunkSize, statementID int, qid uint64, results chan *influxql.Result, closing <-chan struct{}) error { // It is important to "stamp" this time so that everywhere we evaluate `now()` in the statement is EXACTLY the same `now` now := time.Now().UTC() opt := influxql.SelectOptions{InterruptCh: closing} // Replace instances of "now()" with the current time, and check the resultant times. stmt.Condition = influxql.Reduce(stmt.Condition, &influxql.NowValuer{Now: now}) var err error opt.MinTime, opt.MaxTime, err = influxql.TimeRange(stmt.Condition) if err != nil { return err } if opt.MaxTime.IsZero() { opt.MaxTime = now } if opt.MinTime.IsZero() { opt.MinTime = time.Unix(0, 0) } // Convert DISTINCT into a call. stmt.RewriteDistinct() // Remove "time" from fields list. stmt.RewriteTimeFields() // Create an iterator creator based on the shards in the cluster. ic, err := e.iteratorCreator(stmt, &opt) if err != nil { return err } // Expand regex sources to their actual source names. if stmt.Sources.HasRegex() { sources, err := ic.ExpandSources(stmt.Sources) if err != nil { return err } stmt.Sources = sources } // Rewrite wildcards, if any exist. tmp, err := stmt.RewriteWildcards(ic) if err != nil { return err } stmt = tmp if e.MaxSelectBucketsN > 0 && !stmt.IsRawQuery { interval, err := stmt.GroupByInterval() if err != nil { return err } if interval > 0 { // Determine the start and end time matched to the interval (may not match the actual times). min := opt.MinTime.Truncate(interval) max := opt.MaxTime.Truncate(interval).Add(interval) // Determine the number of buckets by finding the time span and dividing by the interval. buckets := int64(max.Sub(min)) / int64(interval) if int(buckets) > e.MaxSelectBucketsN { return fmt.Errorf("max select bucket count exceeded: %d buckets", buckets) } } } // Create a set of iterators from a selection. itrs, err := influxql.Select(stmt, ic, &opt) if err != nil { return err } if qid != 0 && e.MaxSelectPointN > 0 { monitor := influxql.PointLimitMonitor(itrs, influxql.DefaultStatsInterval, e.MaxSelectPointN) e.QueryManager.MonitorQuery(qid, monitor) } // Generate a row emitter from the iterator set. em := influxql.NewEmitter(itrs, stmt.TimeAscending(), chunkSize) em.Columns = stmt.ColumnNames() em.OmitTime = stmt.OmitTime defer em.Close() // Calculate initial stats across all iterators. stats := influxql.Iterators(itrs).Stats() if e.MaxSelectSeriesN > 0 && stats.SeriesN > e.MaxSelectSeriesN { return fmt.Errorf("max select series count exceeded: %d series", stats.SeriesN) } // Emit rows to the results channel. var writeN int64 var emitted bool for { row := em.Emit() if row == nil { // Check if the query was interrupted while emitting. select { case <-closing: return influxql.ErrQueryInterrupted default: } break } result := &influxql.Result{ StatementID: statementID, Series: []*models.Row{row}, } // Write points back into system for INTO statements. if stmt.Target != nil { if err := e.writeInto(stmt, row); err != nil { return err } writeN += int64(len(row.Values)) continue } // Send results or exit if closing. select { case <-closing: return influxql.ErrQueryInterrupted case results <- result: } emitted = true } // Emit write count if an INTO statement. if stmt.Target != nil { results <- &influxql.Result{ StatementID: statementID, Series: []*models.Row{{ Name: "result", Columns: []string{"time", "written"}, Values: [][]interface{}{{time.Unix(0, 0).UTC(), writeN}}, }}, } return nil } // Always emit at least one result. if !emitted { results <- &influxql.Result{ StatementID: statementID, Series: make([]*models.Row, 0), } } return nil }