Exemplo n.º 1
0
// createVarRefIterator creates an iterator for a variable reference.
func (e *Engine) createVarRefIterator(opt influxql.IteratorOptions) ([]influxql.Iterator, error) {
	ref, _ := opt.Expr.(*influxql.VarRef)

	var itrs []influxql.Iterator
	if err := func() error {
		mms := tsdb.Measurements(e.index.MeasurementsByName(influxql.Sources(opt.Sources).Names()))

		// Retrieve the maximum number of fields (without time).
		conditionFields := make([]string, len(influxql.ExprNames(opt.Condition)))

		for _, mm := range mms {
			// Determine tagsets for this measurement based on dimensions and filters.
			tagSets, err := mm.TagSets(opt.Dimensions, opt.Condition)
			if err != nil {
				return err
			}

			// Calculate tag sets and apply SLIMIT/SOFFSET.
			tagSets = influxql.LimitTagSets(tagSets, opt.SLimit, opt.SOffset)

			for _, t := range tagSets {
				for i, seriesKey := range t.SeriesKeys {
					fields := 0
					if t.Filters[i] != nil {
						// Retrieve non-time fields from this series filter and filter out tags.
						for _, f := range influxql.ExprNames(t.Filters[i]) {
							if mm.HasField(f) {
								conditionFields[fields] = f
								fields++
							}
						}
					}

					itr, err := e.createVarRefSeriesIterator(ref, mm, seriesKey, t, t.Filters[i], conditionFields[:fields], opt)
					if err != nil {
						return err
					} else if itr == nil {
						continue
					}
					itrs = append(itrs, itr)
				}
			}
		}
		return nil
	}(); err != nil {
		influxql.Iterators(itrs).Close()
		return nil, err
	}

	return itrs, nil
}
Exemplo n.º 2
0
// ReadAll reads all points from all iterators.
func (itrs Iterators) ReadAll() [][]influxql.Point {
	var a [][]influxql.Point

	// Read from every iterator until a nil is encountered.
	for {
		points := itrs.Next()
		if points == nil {
			break
		}
		a = append(a, points)
	}

	// Close all iterators.
	influxql.Iterators(itrs).Close()

	return a
}
Exemplo n.º 3
0
func (e *QueryExecutor) executeSelectStatement(stmt *influxql.SelectStatement, chunkSize, statementID int, qid uint64, results chan *influxql.Result, closing <-chan struct{}) error {
	// It is important to "stamp" this time so that everywhere we evaluate `now()` in the statement is EXACTLY the same `now`
	now := time.Now().UTC()
	opt := influxql.SelectOptions{InterruptCh: closing}

	// Replace instances of "now()" with the current time, and check the resultant times.
	stmt.Condition = influxql.Reduce(stmt.Condition, &influxql.NowValuer{Now: now})
	var err error
	opt.MinTime, opt.MaxTime, err = influxql.TimeRange(stmt.Condition)
	if err != nil {
		return err
	}

	if opt.MaxTime.IsZero() {
		opt.MaxTime = now
	}
	if opt.MinTime.IsZero() {
		opt.MinTime = time.Unix(0, 0)
	}

	// Convert DISTINCT into a call.
	stmt.RewriteDistinct()

	// Remove "time" from fields list.
	stmt.RewriteTimeFields()

	// Create an iterator creator based on the shards in the cluster.
	ic, err := e.iteratorCreator(stmt, &opt)
	if err != nil {
		return err
	}

	// Expand regex sources to their actual source names.
	if stmt.Sources.HasRegex() {
		sources, err := ic.ExpandSources(stmt.Sources)
		if err != nil {
			return err
		}
		stmt.Sources = sources
	}

	// Rewrite wildcards, if any exist.
	tmp, err := stmt.RewriteWildcards(ic)
	if err != nil {
		return err
	}
	stmt = tmp

	if e.MaxSelectBucketsN > 0 && !stmt.IsRawQuery {
		interval, err := stmt.GroupByInterval()
		if err != nil {
			return err
		}

		if interval > 0 {
			// Determine the start and end time matched to the interval (may not match the actual times).
			min := opt.MinTime.Truncate(interval)
			max := opt.MaxTime.Truncate(interval).Add(interval)

			// Determine the number of buckets by finding the time span and dividing by the interval.
			buckets := int64(max.Sub(min)) / int64(interval)
			if int(buckets) > e.MaxSelectBucketsN {
				return fmt.Errorf("max select bucket count exceeded: %d buckets", buckets)
			}
		}
	}

	// Create a set of iterators from a selection.
	itrs, err := influxql.Select(stmt, ic, &opt)
	if err != nil {
		return err
	}

	if qid != 0 && e.MaxSelectPointN > 0 {
		monitor := influxql.PointLimitMonitor(itrs, influxql.DefaultStatsInterval, e.MaxSelectPointN)
		e.QueryManager.MonitorQuery(qid, monitor)
	}

	// Generate a row emitter from the iterator set.
	em := influxql.NewEmitter(itrs, stmt.TimeAscending(), chunkSize)
	em.Columns = stmt.ColumnNames()
	em.OmitTime = stmt.OmitTime
	defer em.Close()

	// Calculate initial stats across all iterators.
	stats := influxql.Iterators(itrs).Stats()
	if e.MaxSelectSeriesN > 0 && stats.SeriesN > e.MaxSelectSeriesN {
		return fmt.Errorf("max select series count exceeded: %d series", stats.SeriesN)
	}

	// Emit rows to the results channel.
	var writeN int64
	var emitted bool
	for {
		row := em.Emit()
		if row == nil {
			// Check if the query was interrupted while emitting.
			select {
			case <-closing:
				return influxql.ErrQueryInterrupted
			default:
			}
			break
		}

		result := &influxql.Result{
			StatementID: statementID,
			Series:      []*models.Row{row},
		}

		// Write points back into system for INTO statements.
		if stmt.Target != nil {
			if err := e.writeInto(stmt, row); err != nil {
				return err
			}
			writeN += int64(len(row.Values))
			continue
		}

		// Send results or exit if closing.
		select {
		case <-closing:
			return influxql.ErrQueryInterrupted
		case results <- result:
		}

		emitted = true
	}

	// Emit write count if an INTO statement.
	if stmt.Target != nil {
		results <- &influxql.Result{
			StatementID: statementID,
			Series: []*models.Row{{
				Name:    "result",
				Columns: []string{"time", "written"},
				Values:  [][]interface{}{{time.Unix(0, 0).UTC(), writeN}},
			}},
		}
		return nil
	}

	// Always emit at least one result.
	if !emitted {
		results <- &influxql.Result{
			StatementID: statementID,
			Series:      make([]*models.Row, 0),
		}
	}

	return nil
}