// insertInWithin places before/after advice around a statement func (wb *WithinBlock) insertInWithin(a ast.Stmt, w *Weave) string { rout := "" mName := grabMethodName(a) // begin line begin := wb.fset.Position(a.Pos()).Line - 1 after := wb.fset.Position(a.End()).Line + 1 // until this is refactored - any lines we add in our // advice need to be accounted for w/begin before_advice := formatAdvice(wb.aspect.advize.before, mName) after_advice := formatAdvice(wb.aspect.advize.after, mName) if before_advice != "" { rout = w.writeAtLine(wb.fname, begin+wb.linecnt, before_advice) wb.linecnt += strings.Count(before_advice, "\n") + 1 } if after_advice != "" { rout = w.writeAtLine(wb.fname, after+wb.linecnt-1, after_advice) wb.linecnt += strings.Count(after_advice, "\n") + 1 } for t := 0; t < len(wb.aspect.importz); t++ { wb.importsNeeded = append(wb.importsNeeded, wb.aspect.importz[t]) } return rout }
// statementBoundary finds the location in s that terminates the current basic // block in the source. func (f *File) statementBoundary(s ast.Stmt) token.Pos { // Control flow statements are easy. switch s := s.(type) { case *ast.BlockStmt: // Treat blocks like basic blocks to avoid overlapping counters. return s.Lbrace case *ast.IfStmt: return s.Body.Lbrace case *ast.ForStmt: return s.Body.Lbrace case *ast.LabeledStmt: return f.statementBoundary(s.Stmt) case *ast.RangeStmt: return s.Body.Lbrace case *ast.SwitchStmt: return s.Body.Lbrace case *ast.SelectStmt: return s.Body.Lbrace case *ast.TypeSwitchStmt: return s.Body.Lbrace } // If not a control flow statement, it is a declaration, expression, call, etc. and it may have a function literal. // If it does, that's tricky because we want to exclude the body of the function from this block. // Draw a line at the start of the body of the first function literal we find. // TODO: what if there's more than one? Probably doesn't matter much. var literal funcLitFinder ast.Walk(&literal, s) if literal.found() { return token.Pos(literal) } return s.End() }
func emitTraceStmt(f *Function, event TraceEvent, syntax ast.Stmt) Value { t := &Trace{ Event: event, Start: syntax.Pos(), End: syntax.End(), Breakpoint: false, syntax: syntax, } return emitTraceCommon(f, t) }
func (p *parser) makeExpr(s ast.Stmt) ast.Expr { if s == nil { return nil } if es, isExpr := s.(*ast.ExprStmt); isExpr { return p.checkExpr(es.X) } p.error(s.Pos(), "expected condition, found simple statement") return &ast.BadExpr{s.Pos(), s.End()} }
func (v *ShortError) VisitStmt(scope *ast.Scope, stmt ast.Stmt) ScopeVisitor { v.stmt = stmt switch stmt := stmt.(type) { case *ast.BlockStmt: return &ShortError{v.file, v.patches, v.stmt, stmt, 0, new([]byte)} case *ast.ExprStmt: if call := calltomust(stmt.X); call != nil { // TODO(elazarl): depends on number of variables it returns, currently we assume one pos := v.file.Fset.Position(stmt.Pos()) fmt.Printf("%s:%d:%d: 'must' builtin must be assigned into variable\n", pos.Filename, pos.Line, pos.Column) } case *ast.AssignStmt: if len(stmt.Rhs) != 1 { return v } if rhs, ok := stmt.Rhs[0].(*ast.CallExpr); ok { if fun, ok := rhs.Fun.(*ast.Ident); ok && fun.Name == MustKeyword { if stmt.Tok == token.DEFINE { tmpVar := v.tempVar("assignerr_", scope) *v.patches = append(*v.patches, patch.Insert(stmt.TokPos, ", "+tmpVar+" "), patch.Replace(fun, ""), patch.Insert(stmt.End(), "; if "+tmpVar+" != nil "+ "{ panic("+tmpVar+") };"), ) for _, arg := range rhs.Args { v.VisitExpr(scope, arg) } return nil } else if stmt.Tok == token.ASSIGN { vars := []string{} for i := 0; i < len(stmt.Lhs); i++ { vars = append(vars, v.tempVar(fmt.Sprint("assgn", i, "_"), scope)) } assgnerr := v.tempVar("assgnErr_", scope) *v.patches = append(*v.patches, patch.Insert(stmt.Pos(), strings.Join(append(vars, assgnerr), ", ")+":="), patch.InsertNode(stmt.Pos(), rhs.Args[0]), patch.Insert(stmt.Pos(), "; if "+assgnerr+" != nil "+ "{ panic("+assgnerr+") };"), patch.Replace(rhs, strings.Join(vars, ", ")), ) v.VisitExpr(scope, rhs.Args[0]) return nil } } } } return v }
// statementBoundary finds the location in s that terminates the current basic // block in the source. func (f *File) statementBoundary(s ast.Stmt) token.Pos { // Control flow statements are easy. switch s := s.(type) { case *ast.BlockStmt: // Treat blocks like basic blocks to avoid overlapping counters. return s.Lbrace case *ast.IfStmt: return s.Body.Lbrace case *ast.ForStmt: return s.Body.Lbrace case *ast.LabeledStmt: return f.statementBoundary(s.Stmt) case *ast.RangeStmt: // Ranges might loop over things with function literals.: for _ = range []func(){ ... } {. // TODO: There are a few other such possibilities, but they're extremely unlikely. found, pos := hasFuncLiteral(s.X) if found { return pos } return s.Body.Lbrace case *ast.SwitchStmt: return s.Body.Lbrace case *ast.SelectStmt: return s.Body.Lbrace case *ast.TypeSwitchStmt: return s.Body.Lbrace } // If not a control flow statement, it is a declaration, expression, call, etc. and it may have a function literal. // If it does, that's tricky because we want to exclude the body of the function from this block. // Draw a line at the start of the body of the first function literal we find. // TODO: what if there's more than one? Probably doesn't matter much. found, pos := hasFuncLiteral(s) if found { return pos } return s.End() }
// stmt typechecks statement s. func (check *Checker) stmt(ctxt stmtContext, s ast.Stmt) { // statements cannot use iota in general // (constant declarations set it explicitly) assert(check.iota == nil) // statements must end with the same top scope as they started with if debug { defer func(scope *Scope) { // don't check if code is panicking if p := recover(); p != nil { panic(p) } assert(scope == check.scope) }(check.scope) } inner := ctxt &^ fallthroughOk switch s := s.(type) { case *ast.BadStmt, *ast.EmptyStmt: // ignore case *ast.DeclStmt: check.declStmt(s.Decl) case *ast.LabeledStmt: check.hasLabel = true check.stmt(ctxt, s.Stmt) case *ast.ExprStmt: // spec: "With the exception of specific built-in functions, // function and method calls and receive operations can appear // in statement context. Such statements may be parenthesized." var x operand kind := check.rawExpr(&x, s.X, nil) var msg string switch x.mode { default: if kind == statement { return } msg = "is not used" case builtin: msg = "must be called" case typexpr: msg = "is not an expression" } check.errorf(x.pos(), "%s %s", &x, msg) case *ast.SendStmt: var ch, x operand check.expr(&ch, s.Chan) check.expr(&x, s.Value) if ch.mode == invalid || x.mode == invalid { return } tch, ok := ch.typ.Underlying().(*Chan) if !ok { check.invalidOp(s.Arrow, "cannot send to non-chan type %s", ch.typ) return } if tch.dir == RecvOnly { check.invalidOp(s.Arrow, "cannot send to receive-only type %s", tch) return } check.assignment(&x, tch.elem, "send") case *ast.IncDecStmt: var op token.Token switch s.Tok { case token.INC: op = token.ADD case token.DEC: op = token.SUB default: check.invalidAST(s.TokPos, "unknown inc/dec operation %s", s.Tok) return } var x operand check.expr(&x, s.X) if x.mode == invalid { return } if !isNumeric(x.typ) { check.invalidOp(s.X.Pos(), "%s%s (non-numeric type %s)", s.X, s.Tok, x.typ) return } Y := &ast.BasicLit{ValuePos: s.X.Pos(), Kind: token.INT, Value: "1"} // use x's position check.binary(&x, nil, s.X, Y, op) if x.mode == invalid { return } check.assignVar(s.X, &x) case *ast.AssignStmt: switch s.Tok { case token.ASSIGN, token.DEFINE: if len(s.Lhs) == 0 { check.invalidAST(s.Pos(), "missing lhs in assignment") return } if s.Tok == token.DEFINE { check.shortVarDecl(s.TokPos, s.Lhs, s.Rhs) } else { // regular assignment check.assignVars(s.Lhs, s.Rhs) } default: // assignment operations if len(s.Lhs) != 1 || len(s.Rhs) != 1 { check.errorf(s.TokPos, "assignment operation %s requires single-valued expressions", s.Tok) return } op := assignOp(s.Tok) if op == token.ILLEGAL { check.invalidAST(s.TokPos, "unknown assignment operation %s", s.Tok) return } var x operand check.binary(&x, nil, s.Lhs[0], s.Rhs[0], op) if x.mode == invalid { return } check.assignVar(s.Lhs[0], &x) } case *ast.GoStmt: check.suspendedCall("go", s.Call) case *ast.DeferStmt: check.suspendedCall("defer", s.Call) case *ast.ReturnStmt: res := check.sig.results if res.Len() > 0 { // function returns results // (if one, say the first, result parameter is named, all of them are named) if len(s.Results) == 0 && res.vars[0].name != "" { // spec: "Implementation restriction: A compiler may disallow an empty expression // list in a "return" statement if a different entity (constant, type, or variable) // with the same name as a result parameter is in scope at the place of the return." for _, obj := range res.vars { if _, alt := check.scope.LookupParent(obj.name, check.pos); alt != nil && alt != obj { check.errorf(s.Pos(), "result parameter %s not in scope at return", obj.name) check.errorf(alt.Pos(), "\tinner declaration of %s", obj) // ok to continue } } } else { // return has results or result parameters are unnamed check.initVars(res.vars, s.Results, s.Return) } } else if len(s.Results) > 0 { check.error(s.Results[0].Pos(), "no result values expected") check.use(s.Results...) } case *ast.BranchStmt: if s.Label != nil { check.hasLabel = true return // checked in 2nd pass (check.labels) } switch s.Tok { case token.BREAK: if ctxt&breakOk == 0 { check.error(s.Pos(), "break not in for, switch, or select statement") } case token.CONTINUE: if ctxt&continueOk == 0 { check.error(s.Pos(), "continue not in for statement") } case token.FALLTHROUGH: if ctxt&fallthroughOk == 0 { check.error(s.Pos(), "fallthrough statement out of place") } default: check.invalidAST(s.Pos(), "branch statement: %s", s.Tok) } case *ast.BlockStmt: check.openScope(s, "block") defer check.closeScope() check.stmtList(inner, s.List) case *ast.IfStmt: check.openScope(s, "if") defer check.closeScope() check.simpleStmt(s.Init) var x operand check.expr(&x, s.Cond) if x.mode != invalid && !isBoolean(x.typ) { check.error(s.Cond.Pos(), "non-boolean condition in if statement") } check.stmt(inner, s.Body) // The parser produces a correct AST but if it was modified // elsewhere the else branch may be invalid. Check again. switch s.Else.(type) { case nil, *ast.BadStmt: // valid or error already reported case *ast.IfStmt, *ast.BlockStmt: check.stmt(inner, s.Else) default: check.error(s.Else.Pos(), "invalid else branch in if statement") } case *ast.SwitchStmt: inner |= breakOk check.openScope(s, "switch") defer check.closeScope() check.simpleStmt(s.Init) var x operand if s.Tag != nil { check.expr(&x, s.Tag) // By checking assignment of x to an invisible temporary // (as a compiler would), we get all the relevant checks. check.assignment(&x, nil, "switch expression") } else { // spec: "A missing switch expression is // equivalent to the boolean value true." x.mode = constant_ x.typ = Typ[Bool] x.val = constant.MakeBool(true) x.expr = &ast.Ident{NamePos: s.Body.Lbrace, Name: "true"} } check.multipleDefaults(s.Body.List) seen := make(valueMap) // map of seen case values to positions and types for i, c := range s.Body.List { clause, _ := c.(*ast.CaseClause) if clause == nil { check.invalidAST(c.Pos(), "incorrect expression switch case") continue } check.caseValues(&x, clause.List, seen) check.openScope(clause, "case") inner := inner if i+1 < len(s.Body.List) { inner |= fallthroughOk } check.stmtList(inner, clause.Body) check.closeScope() } case *ast.TypeSwitchStmt: inner |= breakOk check.openScope(s, "type switch") defer check.closeScope() check.simpleStmt(s.Init) // A type switch guard must be of the form: // // TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . // // The parser is checking syntactic correctness; // remaining syntactic errors are considered AST errors here. // TODO(gri) better factoring of error handling (invalid ASTs) // var lhs *ast.Ident // lhs identifier or nil var rhs ast.Expr switch guard := s.Assign.(type) { case *ast.ExprStmt: rhs = guard.X case *ast.AssignStmt: if len(guard.Lhs) != 1 || guard.Tok != token.DEFINE || len(guard.Rhs) != 1 { check.invalidAST(s.Pos(), "incorrect form of type switch guard") return } lhs, _ = guard.Lhs[0].(*ast.Ident) if lhs == nil { check.invalidAST(s.Pos(), "incorrect form of type switch guard") return } if lhs.Name == "_" { // _ := x.(type) is an invalid short variable declaration check.softErrorf(lhs.Pos(), "no new variable on left side of :=") lhs = nil // avoid declared but not used error below } else { check.recordDef(lhs, nil) // lhs variable is implicitly declared in each cause clause } rhs = guard.Rhs[0] default: check.invalidAST(s.Pos(), "incorrect form of type switch guard") return } // rhs must be of the form: expr.(type) and expr must be an interface expr, _ := rhs.(*ast.TypeAssertExpr) if expr == nil || expr.Type != nil { check.invalidAST(s.Pos(), "incorrect form of type switch guard") return } var x operand check.expr(&x, expr.X) if x.mode == invalid { return } xtyp, _ := x.typ.Underlying().(*Interface) if xtyp == nil { check.errorf(x.pos(), "%s is not an interface", &x) return } check.multipleDefaults(s.Body.List) var lhsVars []*Var // list of implicitly declared lhs variables seen := make(map[Type]token.Pos) // map of seen types to positions for _, s := range s.Body.List { clause, _ := s.(*ast.CaseClause) if clause == nil { check.invalidAST(s.Pos(), "incorrect type switch case") continue } // Check each type in this type switch case. T := check.caseTypes(&x, xtyp, clause.List, seen) check.openScope(clause, "case") // If lhs exists, declare a corresponding variable in the case-local scope. if lhs != nil { // spec: "The TypeSwitchGuard may include a short variable declaration. // When that form is used, the variable is declared at the beginning of // the implicit block in each clause. In clauses with a case listing // exactly one type, the variable has that type; otherwise, the variable // has the type of the expression in the TypeSwitchGuard." if len(clause.List) != 1 || T == nil { T = x.typ } obj := NewVar(lhs.Pos(), check.pkg, lhs.Name, T) scopePos := clause.End() if len(clause.Body) > 0 { scopePos = clause.Body[0].Pos() } check.declare(check.scope, nil, obj, scopePos) check.recordImplicit(clause, obj) // For the "declared but not used" error, all lhs variables act as // one; i.e., if any one of them is 'used', all of them are 'used'. // Collect them for later analysis. lhsVars = append(lhsVars, obj) } check.stmtList(inner, clause.Body) check.closeScope() } // If lhs exists, we must have at least one lhs variable that was used. if lhs != nil { var used bool for _, v := range lhsVars { if v.used { used = true } v.used = true // avoid usage error when checking entire function } if !used { check.softErrorf(lhs.Pos(), "%s declared but not used", lhs.Name) } } case *ast.SelectStmt: inner |= breakOk check.multipleDefaults(s.Body.List) for _, s := range s.Body.List { clause, _ := s.(*ast.CommClause) if clause == nil { continue // error reported before } // clause.Comm must be a SendStmt, RecvStmt, or default case valid := false var rhs ast.Expr // rhs of RecvStmt, or nil switch s := clause.Comm.(type) { case nil, *ast.SendStmt: valid = true case *ast.AssignStmt: if len(s.Rhs) == 1 { rhs = s.Rhs[0] } case *ast.ExprStmt: rhs = s.X } // if present, rhs must be a receive operation if rhs != nil { if x, _ := unparen(rhs).(*ast.UnaryExpr); x != nil && x.Op == token.ARROW { valid = true } } if !valid { check.error(clause.Comm.Pos(), "select case must be send or receive (possibly with assignment)") continue } check.openScope(s, "case") if clause.Comm != nil { check.stmt(inner, clause.Comm) } check.stmtList(inner, clause.Body) check.closeScope() } case *ast.ForStmt: inner |= breakOk | continueOk check.openScope(s, "for") defer check.closeScope() check.simpleStmt(s.Init) if s.Cond != nil { var x operand check.expr(&x, s.Cond) if x.mode != invalid && !isBoolean(x.typ) { check.error(s.Cond.Pos(), "non-boolean condition in for statement") } } check.simpleStmt(s.Post) // spec: "The init statement may be a short variable // declaration, but the post statement must not." if s, _ := s.Post.(*ast.AssignStmt); s != nil && s.Tok == token.DEFINE { check.softErrorf(s.Pos(), "cannot declare in post statement") check.use(s.Lhs...) // avoid follow-up errors } check.stmt(inner, s.Body) case *ast.RangeStmt: inner |= breakOk | continueOk check.openScope(s, "for") defer check.closeScope() // check expression to iterate over var x operand check.expr(&x, s.X) // determine key/value types var key, val Type if x.mode != invalid { switch typ := x.typ.Underlying().(type) { case *Basic: if isString(typ) { key = Typ[Int] val = universeRune // use 'rune' name } case *Array: key = Typ[Int] val = typ.elem case *Slice: key = Typ[Int] val = typ.elem case *Pointer: if typ, _ := typ.base.Underlying().(*Array); typ != nil { key = Typ[Int] val = typ.elem } case *Map: key = typ.key val = typ.elem case *Chan: key = typ.elem val = Typ[Invalid] if typ.dir == SendOnly { check.errorf(x.pos(), "cannot range over send-only channel %s", &x) // ok to continue } if s.Value != nil { check.errorf(s.Value.Pos(), "iteration over %s permits only one iteration variable", &x) // ok to continue } } } if key == nil { check.errorf(x.pos(), "cannot range over %s", &x) // ok to continue } // check assignment to/declaration of iteration variables // (irregular assignment, cannot easily map to existing assignment checks) // lhs expressions and initialization value (rhs) types lhs := [2]ast.Expr{s.Key, s.Value} rhs := [2]Type{key, val} // key, val may be nil if s.Tok == token.DEFINE { // short variable declaration; variable scope starts after the range clause // (the for loop opens a new scope, so variables on the lhs never redeclare // previously declared variables) var vars []*Var for i, lhs := range lhs { if lhs == nil { continue } // determine lhs variable var obj *Var if ident, _ := lhs.(*ast.Ident); ident != nil { // declare new variable name := ident.Name obj = NewVar(ident.Pos(), check.pkg, name, nil) check.recordDef(ident, obj) // _ variables don't count as new variables if name != "_" { vars = append(vars, obj) } } else { check.errorf(lhs.Pos(), "cannot declare %s", lhs) obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable } // initialize lhs variable if typ := rhs[i]; typ != nil { x.mode = value x.expr = lhs // we don't have a better rhs expression to use here x.typ = typ check.initVar(obj, &x, "range clause") } else { obj.typ = Typ[Invalid] obj.used = true // don't complain about unused variable } } // declare variables if len(vars) > 0 { for _, obj := range vars { // spec: "The scope of a constant or variable identifier declared inside // a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl // for short variable declarations) and ends at the end of the innermost // containing block." scopePos := s.End() check.declare(check.scope, nil /* recordDef already called */, obj, scopePos) } } else { check.error(s.TokPos, "no new variables on left side of :=") } } else { // ordinary assignment for i, lhs := range lhs { if lhs == nil { continue } if typ := rhs[i]; typ != nil { x.mode = value x.expr = lhs // we don't have a better rhs expression to use here x.typ = typ check.assignVar(lhs, &x) } } } check.stmt(inner, s.Body) default: check.error(s.Pos(), "invalid statement") } }
func (check *Checker) openScope(s ast.Stmt, comment string) { scope := NewScope(check.scope, s.Pos(), s.End(), comment) check.recordScope(s, scope) check.scope = scope }
func (v *stmtVisitor) VisitStmt(s ast.Stmt) { var statements *[]ast.Stmt switch s := s.(type) { case *ast.BlockStmt: statements = &s.List case *ast.CaseClause: statements = &s.Body case *ast.CommClause: statements = &s.Body case *ast.ForStmt: if s.Init != nil { v.VisitStmt(s.Init) } if s.Post != nil { v.VisitStmt(s.Post) } v.VisitStmt(s.Body) case *ast.IfStmt: if s.Init != nil { v.VisitStmt(s.Init) } v.VisitStmt(s.Body) if s.Else != nil { v.VisitStmt(s.Else) } case *ast.LabeledStmt: v.VisitStmt(s.Stmt) case *ast.RangeStmt: v.VisitStmt(s.Body) case *ast.SelectStmt: v.VisitStmt(s.Body) case *ast.SwitchStmt: if s.Init != nil { v.VisitStmt(s.Init) } v.VisitStmt(s.Body) case *ast.TypeSwitchStmt: if s.Init != nil { v.VisitStmt(s.Init) } v.VisitStmt(s.Assign) v.VisitStmt(s.Body) } if statements == nil { return } for i := 0; i < len(*statements); i++ { s := (*statements)[i] switch s.(type) { case *ast.CaseClause, *ast.CommClause, *ast.BlockStmt: break default: start, end := v.fset.Position(s.Pos()), v.fset.Position(s.End()) stmtObj := v.functions[len(v.functions)-1].RegisterStatement(start.Offset, end.Offset) expr := makeCall(fmt.Sprint(stmtObj, ".At")) stmt := &ast.ExprStmt{X: expr} item := []ast.Stmt{stmt} *statements = append((*statements)[:i], append(item, (*statements)[i:]...)...) i++ } v.VisitStmt(s) } }
func (f *File) statementBoundary(s ast.Stmt) token.Pos { // Control flow statements are easy. switch s := s.(type) { case *ast.BlockStmt: // Treat blocks like basic blocks to avoid overlapping counters. return s.Lbrace case *ast.IfStmt: found, pos := hasFuncLiteral(s.Init) if found { return pos } found, pos = hasFuncLiteral(s.Cond) if found { return pos } return s.Body.Lbrace case *ast.ForStmt: found, pos := hasFuncLiteral(s.Init) if found { return pos } found, pos = hasFuncLiteral(s.Cond) if found { return pos } found, pos = hasFuncLiteral(s.Post) if found { return pos } return s.Body.Lbrace case *ast.LabeledStmt: return f.statementBoundary(s.Stmt) case *ast.RangeStmt: found, pos := hasFuncLiteral(s.X) if found { return pos } return s.Body.Lbrace case *ast.SwitchStmt: found, pos := hasFuncLiteral(s.Init) if found { return pos } found, pos = hasFuncLiteral(s.Tag) if found { return pos } return s.Body.Lbrace case *ast.SelectStmt: return s.Body.Lbrace case *ast.TypeSwitchStmt: found, pos := hasFuncLiteral(s.Init) if found { return pos } return s.Body.Lbrace } found, pos := hasFuncLiteral(s) if found { return pos } return s.End() }
func (v *StmtVisitor) VisitStmt(s ast.Stmt) { var statements *[]ast.Stmt switch s := s.(type) { case *ast.BlockStmt: statements = &s.List case *ast.CaseClause: statements = &s.Body case *ast.CommClause: statements = &s.Body case *ast.ForStmt: if s.Init != nil { v.VisitStmt(s.Init) } if s.Post != nil { v.VisitStmt(s.Post) } v.VisitStmt(s.Body) case *ast.IfStmt: if s.Init != nil { v.VisitStmt(s.Init) } v.VisitStmt(s.Body) if s.Else != nil { // Code copied from go.tools/cmd/cover, to deal with "if x {} else if y {}" const backupToElse = token.Pos(len("else ")) // The AST doesn't remember the else location. We can make an accurate guess. switch stmt := s.Else.(type) { case *ast.IfStmt: block := &ast.BlockStmt{ Lbrace: stmt.If - backupToElse, // So the covered part looks like it starts at the "else". List: []ast.Stmt{stmt}, Rbrace: stmt.End(), } s.Else = block case *ast.BlockStmt: stmt.Lbrace -= backupToElse // So the block looks like it starts at the "else". default: panic("unexpected node type in if") } v.VisitStmt(s.Else) } case *ast.LabeledStmt: v.VisitStmt(s.Stmt) case *ast.RangeStmt: v.VisitStmt(s.Body) case *ast.SelectStmt: v.VisitStmt(s.Body) case *ast.SwitchStmt: if s.Init != nil { v.VisitStmt(s.Init) } v.VisitStmt(s.Body) case *ast.TypeSwitchStmt: if s.Init != nil { v.VisitStmt(s.Init) } v.VisitStmt(s.Assign) v.VisitStmt(s.Body) } if statements == nil { return } for i := 0; i < len(*statements); i++ { s := (*statements)[i] switch s.(type) { case *ast.CaseClause, *ast.CommClause, *ast.BlockStmt: break default: start, end := v.fset.Position(s.Pos()), v.fset.Position(s.End()) se := &StmtExtent{ startOffset: start.Offset, startLine: start.Line, startCol: start.Column, endOffset: end.Offset, endLine: end.Line, endCol: end.Column, } v.function.stmts = append(v.function.stmts, se) } v.VisitStmt(s) } }