Exemple #1
0
// insertInWithin places before/after advice around a statement
func (wb *WithinBlock) insertInWithin(a ast.Stmt, w *Weave) string {
	rout := ""

	mName := grabMethodName(a)

	// begin line
	begin := wb.fset.Position(a.Pos()).Line - 1
	after := wb.fset.Position(a.End()).Line + 1

	// until this is refactored - any lines we add in our
	// advice need to be accounted for w/begin
	before_advice := formatAdvice(wb.aspect.advize.before, mName)
	after_advice := formatAdvice(wb.aspect.advize.after, mName)

	if before_advice != "" {
		rout = w.writeAtLine(wb.fname, begin+wb.linecnt, before_advice)
		wb.linecnt += strings.Count(before_advice, "\n") + 1
	}

	if after_advice != "" {
		rout = w.writeAtLine(wb.fname, after+wb.linecnt-1, after_advice)

		wb.linecnt += strings.Count(after_advice, "\n") + 1
	}

	for t := 0; t < len(wb.aspect.importz); t++ {
		wb.importsNeeded = append(wb.importsNeeded, wb.aspect.importz[t])
	}

	return rout
}
Exemple #2
0
// statementBoundary finds the location in s that terminates the current basic
// block in the source.
func (f *File) statementBoundary(s ast.Stmt) token.Pos {
	// Control flow statements are easy.
	switch s := s.(type) {
	case *ast.BlockStmt:
		// Treat blocks like basic blocks to avoid overlapping counters.
		return s.Lbrace
	case *ast.IfStmt:
		return s.Body.Lbrace
	case *ast.ForStmt:
		return s.Body.Lbrace
	case *ast.LabeledStmt:
		return f.statementBoundary(s.Stmt)
	case *ast.RangeStmt:
		return s.Body.Lbrace
	case *ast.SwitchStmt:
		return s.Body.Lbrace
	case *ast.SelectStmt:
		return s.Body.Lbrace
	case *ast.TypeSwitchStmt:
		return s.Body.Lbrace
	}
	// If not a control flow statement, it is a declaration, expression, call, etc. and it may have a function literal.
	// If it does, that's tricky because we want to exclude the body of the function from this block.
	// Draw a line at the start of the body of the first function literal we find.
	// TODO: what if there's more than one? Probably doesn't matter much.
	var literal funcLitFinder
	ast.Walk(&literal, s)
	if literal.found() {
		return token.Pos(literal)
	}
	return s.End()
}
Exemple #3
0
func emitTraceStmt(f *Function, event TraceEvent, syntax ast.Stmt) Value {
	t := &Trace{
		Event:      event,
		Start:      syntax.Pos(),
		End:        syntax.End(),
		Breakpoint: false,
		syntax:     syntax,
	}
	return emitTraceCommon(f, t)
}
func (p *parser) makeExpr(s ast.Stmt) ast.Expr {
	if s == nil {
		return nil
	}
	if es, isExpr := s.(*ast.ExprStmt); isExpr {
		return p.checkExpr(es.X)
	}
	p.error(s.Pos(), "expected condition, found simple statement")
	return &ast.BadExpr{s.Pos(), s.End()}
}
Exemple #5
0
func (v *ShortError) VisitStmt(scope *ast.Scope, stmt ast.Stmt) ScopeVisitor {
	v.stmt = stmt
	switch stmt := stmt.(type) {
	case *ast.BlockStmt:
		return &ShortError{v.file, v.patches, v.stmt, stmt, 0, new([]byte)}
	case *ast.ExprStmt:
		if call := calltomust(stmt.X); call != nil {
			// TODO(elazarl): depends on number of variables it returns, currently we assume one
			pos := v.file.Fset.Position(stmt.Pos())
			fmt.Printf("%s:%d:%d: 'must' builtin must be assigned into variable\n",
				pos.Filename, pos.Line, pos.Column)
		}
	case *ast.AssignStmt:
		if len(stmt.Rhs) != 1 {
			return v
		}
		if rhs, ok := stmt.Rhs[0].(*ast.CallExpr); ok {
			if fun, ok := rhs.Fun.(*ast.Ident); ok && fun.Name == MustKeyword {
				if stmt.Tok == token.DEFINE {
					tmpVar := v.tempVar("assignerr_", scope)
					*v.patches = append(*v.patches,
						patch.Insert(stmt.TokPos, ", "+tmpVar+" "),
						patch.Replace(fun, ""),
						patch.Insert(stmt.End(),
							"; if "+tmpVar+" != nil "+
								"{ panic("+tmpVar+") };"),
					)
					for _, arg := range rhs.Args {
						v.VisitExpr(scope, arg)
					}
					return nil
				} else if stmt.Tok == token.ASSIGN {
					vars := []string{}
					for i := 0; i < len(stmt.Lhs); i++ {
						vars = append(vars, v.tempVar(fmt.Sprint("assgn", i, "_"), scope))
					}
					assgnerr := v.tempVar("assgnErr_", scope)

					*v.patches = append(*v.patches,
						patch.Insert(stmt.Pos(),
							strings.Join(append(vars, assgnerr), ", ")+":="),
						patch.InsertNode(stmt.Pos(), rhs.Args[0]),
						patch.Insert(stmt.Pos(),
							"; if "+assgnerr+" != nil "+
								"{ panic("+assgnerr+") };"),
						patch.Replace(rhs, strings.Join(vars, ", ")),
					)
					v.VisitExpr(scope, rhs.Args[0])
					return nil
				}
			}
		}
	}
	return v
}
Exemple #6
0
// statementBoundary finds the location in s that terminates the current basic
// block in the source.
func (f *File) statementBoundary(s ast.Stmt) token.Pos {
	// Control flow statements are easy.
	switch s := s.(type) {
	case *ast.BlockStmt:
		// Treat blocks like basic blocks to avoid overlapping counters.
		return s.Lbrace
	case *ast.IfStmt:
		return s.Body.Lbrace
	case *ast.ForStmt:
		return s.Body.Lbrace
	case *ast.LabeledStmt:
		return f.statementBoundary(s.Stmt)
	case *ast.RangeStmt:
		// Ranges might loop over things with function literals.: for _ = range []func(){ ... } {.
		// TODO: There are a few other such possibilities, but they're extremely unlikely.
		found, pos := hasFuncLiteral(s.X)
		if found {
			return pos
		}
		return s.Body.Lbrace
	case *ast.SwitchStmt:
		return s.Body.Lbrace
	case *ast.SelectStmt:
		return s.Body.Lbrace
	case *ast.TypeSwitchStmt:
		return s.Body.Lbrace
	}
	// If not a control flow statement, it is a declaration, expression, call, etc. and it may have a function literal.
	// If it does, that's tricky because we want to exclude the body of the function from this block.
	// Draw a line at the start of the body of the first function literal we find.
	// TODO: what if there's more than one? Probably doesn't matter much.
	found, pos := hasFuncLiteral(s)
	if found {
		return pos
	}
	return s.End()
}
Exemple #7
0
// stmt typechecks statement s.
func (check *Checker) stmt(ctxt stmtContext, s ast.Stmt) {
	// statements cannot use iota in general
	// (constant declarations set it explicitly)
	assert(check.iota == nil)

	// statements must end with the same top scope as they started with
	if debug {
		defer func(scope *Scope) {
			// don't check if code is panicking
			if p := recover(); p != nil {
				panic(p)
			}
			assert(scope == check.scope)
		}(check.scope)
	}

	inner := ctxt &^ fallthroughOk
	switch s := s.(type) {
	case *ast.BadStmt, *ast.EmptyStmt:
		// ignore

	case *ast.DeclStmt:
		check.declStmt(s.Decl)

	case *ast.LabeledStmt:
		check.hasLabel = true
		check.stmt(ctxt, s.Stmt)

	case *ast.ExprStmt:
		// spec: "With the exception of specific built-in functions,
		// function and method calls and receive operations can appear
		// in statement context. Such statements may be parenthesized."
		var x operand
		kind := check.rawExpr(&x, s.X, nil)
		var msg string
		switch x.mode {
		default:
			if kind == statement {
				return
			}
			msg = "is not used"
		case builtin:
			msg = "must be called"
		case typexpr:
			msg = "is not an expression"
		}
		check.errorf(x.pos(), "%s %s", &x, msg)

	case *ast.SendStmt:
		var ch, x operand
		check.expr(&ch, s.Chan)
		check.expr(&x, s.Value)
		if ch.mode == invalid || x.mode == invalid {
			return
		}

		tch, ok := ch.typ.Underlying().(*Chan)
		if !ok {
			check.invalidOp(s.Arrow, "cannot send to non-chan type %s", ch.typ)
			return
		}

		if tch.dir == RecvOnly {
			check.invalidOp(s.Arrow, "cannot send to receive-only type %s", tch)
			return
		}

		check.assignment(&x, tch.elem, "send")

	case *ast.IncDecStmt:
		var op token.Token
		switch s.Tok {
		case token.INC:
			op = token.ADD
		case token.DEC:
			op = token.SUB
		default:
			check.invalidAST(s.TokPos, "unknown inc/dec operation %s", s.Tok)
			return
		}

		var x operand
		check.expr(&x, s.X)
		if x.mode == invalid {
			return
		}
		if !isNumeric(x.typ) {
			check.invalidOp(s.X.Pos(), "%s%s (non-numeric type %s)", s.X, s.Tok, x.typ)
			return
		}

		Y := &ast.BasicLit{ValuePos: s.X.Pos(), Kind: token.INT, Value: "1"} // use x's position
		check.binary(&x, nil, s.X, Y, op)
		if x.mode == invalid {
			return
		}
		check.assignVar(s.X, &x)

	case *ast.AssignStmt:
		switch s.Tok {
		case token.ASSIGN, token.DEFINE:
			if len(s.Lhs) == 0 {
				check.invalidAST(s.Pos(), "missing lhs in assignment")
				return
			}
			if s.Tok == token.DEFINE {
				check.shortVarDecl(s.TokPos, s.Lhs, s.Rhs)
			} else {
				// regular assignment
				check.assignVars(s.Lhs, s.Rhs)
			}

		default:
			// assignment operations
			if len(s.Lhs) != 1 || len(s.Rhs) != 1 {
				check.errorf(s.TokPos, "assignment operation %s requires single-valued expressions", s.Tok)
				return
			}
			op := assignOp(s.Tok)
			if op == token.ILLEGAL {
				check.invalidAST(s.TokPos, "unknown assignment operation %s", s.Tok)
				return
			}
			var x operand
			check.binary(&x, nil, s.Lhs[0], s.Rhs[0], op)
			if x.mode == invalid {
				return
			}
			check.assignVar(s.Lhs[0], &x)
		}

	case *ast.GoStmt:
		check.suspendedCall("go", s.Call)

	case *ast.DeferStmt:
		check.suspendedCall("defer", s.Call)

	case *ast.ReturnStmt:
		res := check.sig.results
		if res.Len() > 0 {
			// function returns results
			// (if one, say the first, result parameter is named, all of them are named)
			if len(s.Results) == 0 && res.vars[0].name != "" {
				// spec: "Implementation restriction: A compiler may disallow an empty expression
				// list in a "return" statement if a different entity (constant, type, or variable)
				// with the same name as a result parameter is in scope at the place of the return."
				for _, obj := range res.vars {
					if _, alt := check.scope.LookupParent(obj.name, check.pos); alt != nil && alt != obj {
						check.errorf(s.Pos(), "result parameter %s not in scope at return", obj.name)
						check.errorf(alt.Pos(), "\tinner declaration of %s", obj)
						// ok to continue
					}
				}
			} else {
				// return has results or result parameters are unnamed
				check.initVars(res.vars, s.Results, s.Return)
			}
		} else if len(s.Results) > 0 {
			check.error(s.Results[0].Pos(), "no result values expected")
			check.use(s.Results...)
		}

	case *ast.BranchStmt:
		if s.Label != nil {
			check.hasLabel = true
			return // checked in 2nd pass (check.labels)
		}
		switch s.Tok {
		case token.BREAK:
			if ctxt&breakOk == 0 {
				check.error(s.Pos(), "break not in for, switch, or select statement")
			}
		case token.CONTINUE:
			if ctxt&continueOk == 0 {
				check.error(s.Pos(), "continue not in for statement")
			}
		case token.FALLTHROUGH:
			if ctxt&fallthroughOk == 0 {
				check.error(s.Pos(), "fallthrough statement out of place")
			}
		default:
			check.invalidAST(s.Pos(), "branch statement: %s", s.Tok)
		}

	case *ast.BlockStmt:
		check.openScope(s, "block")
		defer check.closeScope()

		check.stmtList(inner, s.List)

	case *ast.IfStmt:
		check.openScope(s, "if")
		defer check.closeScope()

		check.simpleStmt(s.Init)
		var x operand
		check.expr(&x, s.Cond)
		if x.mode != invalid && !isBoolean(x.typ) {
			check.error(s.Cond.Pos(), "non-boolean condition in if statement")
		}
		check.stmt(inner, s.Body)
		// The parser produces a correct AST but if it was modified
		// elsewhere the else branch may be invalid. Check again.
		switch s.Else.(type) {
		case nil, *ast.BadStmt:
			// valid or error already reported
		case *ast.IfStmt, *ast.BlockStmt:
			check.stmt(inner, s.Else)
		default:
			check.error(s.Else.Pos(), "invalid else branch in if statement")
		}

	case *ast.SwitchStmt:
		inner |= breakOk
		check.openScope(s, "switch")
		defer check.closeScope()

		check.simpleStmt(s.Init)
		var x operand
		if s.Tag != nil {
			check.expr(&x, s.Tag)
			// By checking assignment of x to an invisible temporary
			// (as a compiler would), we get all the relevant checks.
			check.assignment(&x, nil, "switch expression")
		} else {
			// spec: "A missing switch expression is
			// equivalent to the boolean value true."
			x.mode = constant_
			x.typ = Typ[Bool]
			x.val = constant.MakeBool(true)
			x.expr = &ast.Ident{NamePos: s.Body.Lbrace, Name: "true"}
		}

		check.multipleDefaults(s.Body.List)

		seen := make(valueMap) // map of seen case values to positions and types
		for i, c := range s.Body.List {
			clause, _ := c.(*ast.CaseClause)
			if clause == nil {
				check.invalidAST(c.Pos(), "incorrect expression switch case")
				continue
			}
			check.caseValues(&x, clause.List, seen)
			check.openScope(clause, "case")
			inner := inner
			if i+1 < len(s.Body.List) {
				inner |= fallthroughOk
			}
			check.stmtList(inner, clause.Body)
			check.closeScope()
		}

	case *ast.TypeSwitchStmt:
		inner |= breakOk
		check.openScope(s, "type switch")
		defer check.closeScope()

		check.simpleStmt(s.Init)

		// A type switch guard must be of the form:
		//
		//     TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
		//
		// The parser is checking syntactic correctness;
		// remaining syntactic errors are considered AST errors here.
		// TODO(gri) better factoring of error handling (invalid ASTs)
		//
		var lhs *ast.Ident // lhs identifier or nil
		var rhs ast.Expr
		switch guard := s.Assign.(type) {
		case *ast.ExprStmt:
			rhs = guard.X
		case *ast.AssignStmt:
			if len(guard.Lhs) != 1 || guard.Tok != token.DEFINE || len(guard.Rhs) != 1 {
				check.invalidAST(s.Pos(), "incorrect form of type switch guard")
				return
			}

			lhs, _ = guard.Lhs[0].(*ast.Ident)
			if lhs == nil {
				check.invalidAST(s.Pos(), "incorrect form of type switch guard")
				return
			}

			if lhs.Name == "_" {
				// _ := x.(type) is an invalid short variable declaration
				check.softErrorf(lhs.Pos(), "no new variable on left side of :=")
				lhs = nil // avoid declared but not used error below
			} else {
				check.recordDef(lhs, nil) // lhs variable is implicitly declared in each cause clause
			}

			rhs = guard.Rhs[0]

		default:
			check.invalidAST(s.Pos(), "incorrect form of type switch guard")
			return
		}

		// rhs must be of the form: expr.(type) and expr must be an interface
		expr, _ := rhs.(*ast.TypeAssertExpr)
		if expr == nil || expr.Type != nil {
			check.invalidAST(s.Pos(), "incorrect form of type switch guard")
			return
		}
		var x operand
		check.expr(&x, expr.X)
		if x.mode == invalid {
			return
		}
		xtyp, _ := x.typ.Underlying().(*Interface)
		if xtyp == nil {
			check.errorf(x.pos(), "%s is not an interface", &x)
			return
		}

		check.multipleDefaults(s.Body.List)

		var lhsVars []*Var               // list of implicitly declared lhs variables
		seen := make(map[Type]token.Pos) // map of seen types to positions
		for _, s := range s.Body.List {
			clause, _ := s.(*ast.CaseClause)
			if clause == nil {
				check.invalidAST(s.Pos(), "incorrect type switch case")
				continue
			}
			// Check each type in this type switch case.
			T := check.caseTypes(&x, xtyp, clause.List, seen)
			check.openScope(clause, "case")
			// If lhs exists, declare a corresponding variable in the case-local scope.
			if lhs != nil {
				// spec: "The TypeSwitchGuard may include a short variable declaration.
				// When that form is used, the variable is declared at the beginning of
				// the implicit block in each clause. In clauses with a case listing
				// exactly one type, the variable has that type; otherwise, the variable
				// has the type of the expression in the TypeSwitchGuard."
				if len(clause.List) != 1 || T == nil {
					T = x.typ
				}
				obj := NewVar(lhs.Pos(), check.pkg, lhs.Name, T)
				scopePos := clause.End()
				if len(clause.Body) > 0 {
					scopePos = clause.Body[0].Pos()
				}
				check.declare(check.scope, nil, obj, scopePos)
				check.recordImplicit(clause, obj)
				// For the "declared but not used" error, all lhs variables act as
				// one; i.e., if any one of them is 'used', all of them are 'used'.
				// Collect them for later analysis.
				lhsVars = append(lhsVars, obj)
			}
			check.stmtList(inner, clause.Body)
			check.closeScope()
		}

		// If lhs exists, we must have at least one lhs variable that was used.
		if lhs != nil {
			var used bool
			for _, v := range lhsVars {
				if v.used {
					used = true
				}
				v.used = true // avoid usage error when checking entire function
			}
			if !used {
				check.softErrorf(lhs.Pos(), "%s declared but not used", lhs.Name)
			}
		}

	case *ast.SelectStmt:
		inner |= breakOk

		check.multipleDefaults(s.Body.List)

		for _, s := range s.Body.List {
			clause, _ := s.(*ast.CommClause)
			if clause == nil {
				continue // error reported before
			}

			// clause.Comm must be a SendStmt, RecvStmt, or default case
			valid := false
			var rhs ast.Expr // rhs of RecvStmt, or nil
			switch s := clause.Comm.(type) {
			case nil, *ast.SendStmt:
				valid = true
			case *ast.AssignStmt:
				if len(s.Rhs) == 1 {
					rhs = s.Rhs[0]
				}
			case *ast.ExprStmt:
				rhs = s.X
			}

			// if present, rhs must be a receive operation
			if rhs != nil {
				if x, _ := unparen(rhs).(*ast.UnaryExpr); x != nil && x.Op == token.ARROW {
					valid = true
				}
			}

			if !valid {
				check.error(clause.Comm.Pos(), "select case must be send or receive (possibly with assignment)")
				continue
			}

			check.openScope(s, "case")
			if clause.Comm != nil {
				check.stmt(inner, clause.Comm)
			}
			check.stmtList(inner, clause.Body)
			check.closeScope()
		}

	case *ast.ForStmt:
		inner |= breakOk | continueOk
		check.openScope(s, "for")
		defer check.closeScope()

		check.simpleStmt(s.Init)
		if s.Cond != nil {
			var x operand
			check.expr(&x, s.Cond)
			if x.mode != invalid && !isBoolean(x.typ) {
				check.error(s.Cond.Pos(), "non-boolean condition in for statement")
			}
		}
		check.simpleStmt(s.Post)
		// spec: "The init statement may be a short variable
		// declaration, but the post statement must not."
		if s, _ := s.Post.(*ast.AssignStmt); s != nil && s.Tok == token.DEFINE {
			check.softErrorf(s.Pos(), "cannot declare in post statement")
			check.use(s.Lhs...) // avoid follow-up errors
		}
		check.stmt(inner, s.Body)

	case *ast.RangeStmt:
		inner |= breakOk | continueOk
		check.openScope(s, "for")
		defer check.closeScope()

		// check expression to iterate over
		var x operand
		check.expr(&x, s.X)

		// determine key/value types
		var key, val Type
		if x.mode != invalid {
			switch typ := x.typ.Underlying().(type) {
			case *Basic:
				if isString(typ) {
					key = Typ[Int]
					val = universeRune // use 'rune' name
				}
			case *Array:
				key = Typ[Int]
				val = typ.elem
			case *Slice:
				key = Typ[Int]
				val = typ.elem
			case *Pointer:
				if typ, _ := typ.base.Underlying().(*Array); typ != nil {
					key = Typ[Int]
					val = typ.elem
				}
			case *Map:
				key = typ.key
				val = typ.elem
			case *Chan:
				key = typ.elem
				val = Typ[Invalid]
				if typ.dir == SendOnly {
					check.errorf(x.pos(), "cannot range over send-only channel %s", &x)
					// ok to continue
				}
				if s.Value != nil {
					check.errorf(s.Value.Pos(), "iteration over %s permits only one iteration variable", &x)
					// ok to continue
				}
			}
		}

		if key == nil {
			check.errorf(x.pos(), "cannot range over %s", &x)
			// ok to continue
		}

		// check assignment to/declaration of iteration variables
		// (irregular assignment, cannot easily map to existing assignment checks)

		// lhs expressions and initialization value (rhs) types
		lhs := [2]ast.Expr{s.Key, s.Value}
		rhs := [2]Type{key, val} // key, val may be nil

		if s.Tok == token.DEFINE {
			// short variable declaration; variable scope starts after the range clause
			// (the for loop opens a new scope, so variables on the lhs never redeclare
			// previously declared variables)
			var vars []*Var
			for i, lhs := range lhs {
				if lhs == nil {
					continue
				}

				// determine lhs variable
				var obj *Var
				if ident, _ := lhs.(*ast.Ident); ident != nil {
					// declare new variable
					name := ident.Name
					obj = NewVar(ident.Pos(), check.pkg, name, nil)
					check.recordDef(ident, obj)
					// _ variables don't count as new variables
					if name != "_" {
						vars = append(vars, obj)
					}
				} else {
					check.errorf(lhs.Pos(), "cannot declare %s", lhs)
					obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable
				}

				// initialize lhs variable
				if typ := rhs[i]; typ != nil {
					x.mode = value
					x.expr = lhs // we don't have a better rhs expression to use here
					x.typ = typ
					check.initVar(obj, &x, "range clause")
				} else {
					obj.typ = Typ[Invalid]
					obj.used = true // don't complain about unused variable
				}
			}

			// declare variables
			if len(vars) > 0 {
				for _, obj := range vars {
					// spec: "The scope of a constant or variable identifier declared inside
					// a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl
					// for short variable declarations) and ends at the end of the innermost
					// containing block."
					scopePos := s.End()
					check.declare(check.scope, nil /* recordDef already called */, obj, scopePos)
				}
			} else {
				check.error(s.TokPos, "no new variables on left side of :=")
			}
		} else {
			// ordinary assignment
			for i, lhs := range lhs {
				if lhs == nil {
					continue
				}
				if typ := rhs[i]; typ != nil {
					x.mode = value
					x.expr = lhs // we don't have a better rhs expression to use here
					x.typ = typ
					check.assignVar(lhs, &x)
				}
			}
		}

		check.stmt(inner, s.Body)

	default:
		check.error(s.Pos(), "invalid statement")
	}
}
Exemple #8
0
func (check *Checker) openScope(s ast.Stmt, comment string) {
	scope := NewScope(check.scope, s.Pos(), s.End(), comment)
	check.recordScope(s, scope)
	check.scope = scope
}
Exemple #9
0
func (v *stmtVisitor) VisitStmt(s ast.Stmt) {
	var statements *[]ast.Stmt
	switch s := s.(type) {
	case *ast.BlockStmt:
		statements = &s.List
	case *ast.CaseClause:
		statements = &s.Body
	case *ast.CommClause:
		statements = &s.Body
	case *ast.ForStmt:
		if s.Init != nil {
			v.VisitStmt(s.Init)
		}
		if s.Post != nil {
			v.VisitStmt(s.Post)
		}
		v.VisitStmt(s.Body)
	case *ast.IfStmt:
		if s.Init != nil {
			v.VisitStmt(s.Init)
		}
		v.VisitStmt(s.Body)
		if s.Else != nil {
			v.VisitStmt(s.Else)
		}
	case *ast.LabeledStmt:
		v.VisitStmt(s.Stmt)
	case *ast.RangeStmt:
		v.VisitStmt(s.Body)
	case *ast.SelectStmt:
		v.VisitStmt(s.Body)
	case *ast.SwitchStmt:
		if s.Init != nil {
			v.VisitStmt(s.Init)
		}
		v.VisitStmt(s.Body)
	case *ast.TypeSwitchStmt:
		if s.Init != nil {
			v.VisitStmt(s.Init)
		}
		v.VisitStmt(s.Assign)
		v.VisitStmt(s.Body)
	}
	if statements == nil {
		return
	}
	for i := 0; i < len(*statements); i++ {
		s := (*statements)[i]
		switch s.(type) {
		case *ast.CaseClause, *ast.CommClause, *ast.BlockStmt:
			break
		default:
			start, end := v.fset.Position(s.Pos()), v.fset.Position(s.End())
			stmtObj := v.functions[len(v.functions)-1].RegisterStatement(start.Offset, end.Offset)
			expr := makeCall(fmt.Sprint(stmtObj, ".At"))
			stmt := &ast.ExprStmt{X: expr}
			item := []ast.Stmt{stmt}
			*statements = append((*statements)[:i], append(item, (*statements)[i:]...)...)
			i++
		}
		v.VisitStmt(s)
	}
}
Exemple #10
0
func (f *File) statementBoundary(s ast.Stmt) token.Pos {
	// Control flow statements are easy.
	switch s := s.(type) {
	case *ast.BlockStmt:
		// Treat blocks like basic blocks to avoid overlapping counters.
		return s.Lbrace
	case *ast.IfStmt:
		found, pos := hasFuncLiteral(s.Init)
		if found {
			return pos
		}
		found, pos = hasFuncLiteral(s.Cond)
		if found {
			return pos
		}
		return s.Body.Lbrace
	case *ast.ForStmt:
		found, pos := hasFuncLiteral(s.Init)
		if found {
			return pos
		}
		found, pos = hasFuncLiteral(s.Cond)
		if found {
			return pos
		}
		found, pos = hasFuncLiteral(s.Post)
		if found {
			return pos
		}
		return s.Body.Lbrace
	case *ast.LabeledStmt:
		return f.statementBoundary(s.Stmt)
	case *ast.RangeStmt:
		found, pos := hasFuncLiteral(s.X)
		if found {
			return pos
		}
		return s.Body.Lbrace
	case *ast.SwitchStmt:
		found, pos := hasFuncLiteral(s.Init)
		if found {
			return pos
		}
		found, pos = hasFuncLiteral(s.Tag)
		if found {
			return pos
		}
		return s.Body.Lbrace
	case *ast.SelectStmt:
		return s.Body.Lbrace
	case *ast.TypeSwitchStmt:
		found, pos := hasFuncLiteral(s.Init)
		if found {
			return pos
		}
		return s.Body.Lbrace
	}
	found, pos := hasFuncLiteral(s)
	if found {
		return pos
	}
	return s.End()
}
Exemple #11
0
func (v *StmtVisitor) VisitStmt(s ast.Stmt) {
	var statements *[]ast.Stmt
	switch s := s.(type) {
	case *ast.BlockStmt:
		statements = &s.List
	case *ast.CaseClause:
		statements = &s.Body
	case *ast.CommClause:
		statements = &s.Body
	case *ast.ForStmt:
		if s.Init != nil {
			v.VisitStmt(s.Init)
		}
		if s.Post != nil {
			v.VisitStmt(s.Post)
		}
		v.VisitStmt(s.Body)
	case *ast.IfStmt:
		if s.Init != nil {
			v.VisitStmt(s.Init)
		}
		v.VisitStmt(s.Body)
		if s.Else != nil {
			// Code copied from go.tools/cmd/cover, to deal with "if x {} else if y {}"
			const backupToElse = token.Pos(len("else ")) // The AST doesn't remember the else location. We can make an accurate guess.
			switch stmt := s.Else.(type) {
			case *ast.IfStmt:
				block := &ast.BlockStmt{
					Lbrace: stmt.If - backupToElse, // So the covered part looks like it starts at the "else".
					List:   []ast.Stmt{stmt},
					Rbrace: stmt.End(),
				}
				s.Else = block
			case *ast.BlockStmt:
				stmt.Lbrace -= backupToElse // So the block looks like it starts at the "else".
			default:
				panic("unexpected node type in if")
			}
			v.VisitStmt(s.Else)
		}
	case *ast.LabeledStmt:
		v.VisitStmt(s.Stmt)
	case *ast.RangeStmt:
		v.VisitStmt(s.Body)
	case *ast.SelectStmt:
		v.VisitStmt(s.Body)
	case *ast.SwitchStmt:
		if s.Init != nil {
			v.VisitStmt(s.Init)
		}
		v.VisitStmt(s.Body)
	case *ast.TypeSwitchStmt:
		if s.Init != nil {
			v.VisitStmt(s.Init)
		}
		v.VisitStmt(s.Assign)
		v.VisitStmt(s.Body)
	}
	if statements == nil {
		return
	}
	for i := 0; i < len(*statements); i++ {
		s := (*statements)[i]
		switch s.(type) {
		case *ast.CaseClause, *ast.CommClause, *ast.BlockStmt:
			break
		default:
			start, end := v.fset.Position(s.Pos()), v.fset.Position(s.End())
			se := &StmtExtent{
				startOffset: start.Offset,
				startLine:   start.Line,
				startCol:    start.Column,
				endOffset:   end.Offset,
				endLine:     end.Line,
				endCol:      end.Column,
			}
			v.function.stmts = append(v.function.stmts, se)
		}
		v.VisitStmt(s)
	}
}