func onStart(glctx gl.Context) { var err error program, err = glutil.CreateProgram(glctx, vertexShader, fragmentShader) if err != nil { log.Printf("[ERR] Failed creating GL program: %v", err) return } buf = glctx.CreateBuffer() glctx.BindBuffer(gl.ARRAY_BUFFER, buf) glctx.BufferData(gl.ARRAY_BUFFER, triangleData, gl.STATIC_DRAW) position = glctx.GetAttribLocation(program, "position") color = glctx.GetUniformLocation(program, "color") offset = glctx.GetUniformLocation(program, "offset") images = glutil.NewImages(glctx) fps = debug.NewFPS(images) statusFont, statusFace, err = exfont.LoadAsset("Tuffy.ttf", statusFaceOpt) if err != nil { log.Printf("[ERR] Failed to load status font: %v", err) } statusPainter = rexdemo.NewStatusPainter(demo, statusFont, statusBG, images) ifaces, err := net.Interfaces() if err != nil { log.Printf("[ERR] Failed to retreived interfaces") } else { log.Printf("[DEBUG] %d network interfaces", len(ifaces)) for _, iface := range ifaces { log.Printf("[DEBUG] IFACE %d %s", iface.Index, iface.Name) } } }
func onStart(glctx gl.Context) { var err error program, err = glutil.CreateProgram(glctx, vertexShader, fragmentShader) if err != nil { log.Printf("[ERR] Failed creating GL program: %v", err) return } buf = glctx.CreateBuffer() glctx.BindBuffer(gl.ARRAY_BUFFER, buf) glctx.BufferData(gl.ARRAY_BUFFER, triangleData, gl.STATIC_DRAW) position = glctx.GetAttribLocation(program, "position") color = glctx.GetUniformLocation(program, "color") offset = glctx.GetUniformLocation(program, "offset") images = glutil.NewImages(glctx) fps = debug.NewFPS(images) statusFont, statusFace, err = exfont.LoadAsset("Tuffy.ttf", statusFaceOpt) if err != nil { log.Printf("[ERR] Failed to load status font: %v", err) } statusPainter = rexdemo.NewStatusPainter(demo, statusFont, _color.White, images) }
// TODO just how many samples do we want/need to display something useful? func NewWaveform(ctx gl.Context, n int, in Sound) (*Waveform, error) { wf := &Waveform{Sound: in} wf.outs = make([][]float64, n) for i := range wf.outs { wf.outs[i] = make([]float64, in.BufferLen()*in.Channels()) } wf.samples = make([]float64, in.BufferLen()*in.Channels()*n) // wf.aligned = make([]float64, in.BufferLen()*in.Channels()*n) wf.verts = make([]float32, len(wf.samples)*3) wf.data = make([]byte, len(wf.verts)*4) if ctx == nil { return wf, nil } var err error wf.program, err = glutil.CreateProgram(ctx, vertexShader, fragmentShader) if err != nil { return nil, fmt.Errorf("error creating GL program: %v", err) } // create and alloc hw buf wf.buf = ctx.CreateBuffer() ctx.BindBuffer(gl.ARRAY_BUFFER, wf.buf) ctx.BufferData(gl.ARRAY_BUFFER, make([]byte, len(wf.samples)*12), gl.STREAM_DRAW) wf.position = ctx.GetAttribLocation(wf.program, "position") wf.color = ctx.GetUniformLocation(wf.program, "color") return wf, nil }
// NewImages creates an *Images. func NewImages(glctx gl.Context) *Images { program, err := CreateProgram(glctx, vertexShader, fragmentShader) if err != nil { panic(err) } p := &Images{ glctx: glctx, quadXY: glctx.CreateBuffer(), quadUV: glctx.CreateBuffer(), program: program, pos: glctx.GetAttribLocation(program, "pos"), mvp: glctx.GetUniformLocation(program, "mvp"), uvp: glctx.GetUniformLocation(program, "uvp"), inUV: glctx.GetAttribLocation(program, "inUV"), textureSample: glctx.GetUniformLocation(program, "textureSample"), } glctx.BindBuffer(gl.ARRAY_BUFFER, p.quadXY) glctx.BufferData(gl.ARRAY_BUFFER, quadXYCoords, gl.STATIC_DRAW) glctx.BindBuffer(gl.ARRAY_BUFFER, p.quadUV) glctx.BufferData(gl.ARRAY_BUFFER, quadUVCoords, gl.STATIC_DRAW) return p }
func NewButton(ctx gl.Context, x, y float32, w, h float32) *Button { btn := &Button{r: 1, g: 1, b: 1, a: 1} btn.x = (-(-1 - x)) / 2 btn.y = (1 - y) / 2 btn.w, btn.h = (w)/2, (-h)/2 btn.verts = []float32{ x, y, 0, x + w, y, 0, x, y + h, 0, x, y + h, 0, x + w, y, 0, x + w, y + h, 0, } btn.data = make([]byte, len(btn.verts)*4) var err error btn.program, err = glutil.CreateProgram(ctx, vertexShader, fragmentShader) if err != nil { panic(fmt.Errorf("error creating GL program: %v", err)) } // create and alloc hw buf btn.buf = ctx.CreateBuffer() ctx.BindBuffer(gl.ARRAY_BUFFER, btn.buf) ctx.BufferData(gl.ARRAY_BUFFER, make([]byte, len(btn.verts)*4), gl.STATIC_DRAW) btn.position = ctx.GetAttribLocation(btn.program, "position") btn.color = ctx.GetUniformLocation(btn.program, "color") return btn }
// NewWhiteKey is a constructor that creates and returns a WhiteKey func NewWhiteKey(glctx gl.Context, note util.KeyNote, sz size.Event, count int) *WhiteKey { newWhiteKey := new(WhiteKey) // Create the coloring and sound for the white key. newWhiteKey.PianoKey = newPianoKey(glctx, whiteKeyRGBColor, note) // Create coordinates for this specific white key newWhiteKey.openGLCoords, newWhiteKey.keyOutline, newWhiteKey.keyOuterBoundary = makeWhiteKeyVector(float32(sz.WidthPx), count) glctx.BufferData(gl.ARRAY_BUFFER, newWhiteKey.openGLCoords, gl.STATIC_DRAW) return newWhiteKey }
// NewBlackKey is a constructor that creates and returns a BlackKey func NewBlackKey(leftWhiteKey Key, glctx gl.Context, note util.KeyNote, sz size.Event) *BlackKey { newBlackKey := new(BlackKey) // Create the coloring and sound for the black key. newBlackKey.PianoKey = newPianoKey(glctx, blackKeyRGBColor, note) // Create coordinates for this specific black key newBlackKey.openGLCoords, newBlackKey.keyOutline, newBlackKey.keyOuterBoundary = makeBlackKeyVector(leftWhiteKey) glctx.BufferData(gl.ARRAY_BUFFER, newBlackKey.openGLCoords, gl.STATIC_DRAW) return newBlackKey }
func onStart(glctx gl.Context) { var err error program, err = glutil.CreateProgram(glctx, vertexShader, fragmentShader) if err != nil { log.Printf("error creating GL program: %v", err) return } buf = glctx.CreateBuffer() glctx.BindBuffer(gl.ARRAY_BUFFER, buf) glctx.BufferData(gl.ARRAY_BUFFER, triangleData, gl.STATIC_DRAW) position = glctx.GetAttribLocation(program, "position") color = glctx.GetUniformLocation(program, "color") offset = glctx.GetUniformLocation(program, "offset") images = glutil.NewImages(glctx) fps = debug.NewFPS(images) }
func (buf *uintBuffer) Update(ctx gl.Context, data []uint32) { buf.count = len(data) subok := len(buf.bin) > 0 && len(data)*4 <= len(buf.bin) if !subok { buf.bin = make([]byte, len(data)*4) } for i, u := range data { buf.bin[4*i+0] = byte(u >> 0) buf.bin[4*i+1] = byte(u >> 8) buf.bin[4*i+2] = byte(u >> 16) buf.bin[4*i+3] = byte(u >> 24) } if subok { ctx.BufferSubData(gl.ELEMENT_ARRAY_BUFFER, 0, buf.bin) } else { ctx.BufferData(gl.ELEMENT_ARRAY_BUFFER, buf.bin, buf.usage) } }
// NewKey initializes a new Key func NewKey(glctx gl.Context, x, y, z, length, width, height float32, color Color, idColor Color, tex []byte) *Key { r := &Key{ glctx, x, y, z, length, width, height, []byte{}, color, idColor, glctx.CreateBuffer(), tex, } r.chart() glctx.BindBuffer(gl.ARRAY_BUFFER, r.buf) glctx.BufferData(gl.ARRAY_BUFFER, r.data, gl.STATIC_DRAW) return r }
func onStart(glctx gl.Context) { var err error program, err = glutil.CreateProgram(glctx, vertexShader, fragmentShader) if err != nil { log.Printf("error creating GL program: %v", err) return } glctx.Enable(gl.DEPTH_TEST) triBuf = glctx.CreateBuffer() glctx.BindBuffer(gl.ARRAY_BUFFER, triBuf) glctx.BufferData(gl.ARRAY_BUFFER, triangleData, gl.STATIC_DRAW) position = glctx.GetAttribLocation(program, "vPos") color = glctx.GetAttribLocation(program, "vCol") normals = glctx.GetAttribLocation(program, "vNorm") projection = glctx.GetUniformLocation(program, "proj") view = glctx.GetUniformLocation(program, "view") model = glctx.GetUniformLocation(program, "model") tint = glctx.GetUniformLocation(program, "tint") normalMatrix = glctx.GetUniformLocation(program, "normalMatrix") lightIntensity = glctx.GetUniformLocation(program, "light.intensities") lightPos = glctx.GetUniformLocation(program, "light.position") arcball = NewArcBall(mgl32.Vec3{0, 0, 0}, mgl32.Vec3{0, 10, 10}, mgl32.Vec3{0, 1, 0}) white = mgl32.Vec4{1.0, 1.0, 1.0, 1.0} red = mgl32.Vec4{1.0, 0.0, 0.0, 1.0} lastUpdate = time.Now() images = glutil.NewImages(glctx) fps = debug.NewFPS(images) err = al.OpenDevice() if err != nil { log.Printf("Err: %+v", err) } al.SetListenerPosition(al.Vector{0, 0, 0}) al.SetListenerGain(1.0) piano = NewPiano() }
func appStart(glctx gl.Context) { println("Starting") program, err = glutil.CreateProgram(glctx, vertexShader, fragmentShader) if err != nil { panic("error creating GL program: " + err.Error()) return } buf = glctx.CreateBuffer() glctx.BindBuffer(gl.ARRAY_BUFFER, buf) glctx.BufferData(gl.ARRAY_BUFFER, triangleData, gl.STATIC_DRAW) position = glctx.GetAttribLocation(program, "position") color = glctx.GetUniformLocation(program, "color") offset = glctx.GetUniformLocation(program, "offset") images = glutil.NewImages(glctx) fps = debug.NewFPS(images) SetScene(currentScene.Name) }
func onStart(glctx gl.Context) { var err error program, err = glutil.CreateProgram(glctx, vertexShader, fragmentShader) if err != nil { log.Printf("error creating GL program: %v", err) return } /*opengl中三种变量 uniform变量是外部application程序传递给(vertex和fragment)shader的变量。因此它是application通过函数glUniform**()函数赋值的。 在(vertex和fragment)shader程序内部,uniform变量就像是C语言里面的常量(const ),它不能被shader程序修改。(shader只能用,不能改) attribute变量是只能在vertex shader中使用的变量。(它不能在fragment shader中声明attribute变量,也不能被fragment shader中使用) 一般用attribute变量来表示一些顶点的数据,如:顶点坐标,法线,纹理坐标,顶点颜色等。 在application中,一般用函数glBindAttribLocation()来绑定每个attribute变量的位置,然后用函数glVertexAttribPointer()为每个attribute变量赋值。 varying变量是vertex和fragment shader之间做数据传递用的。一般vertex shader修改varying变量的值,然后fragment shader使用该varying变量的值。 因此varying变量在vertex和fragment shader二者之间的声明必须是一致的。application不能使用此变量。 */ position = glctx.GetAttribLocation(program, "position") //获取位置对象(索引) color = glctx.GetAttribLocation(program, "color") // 获取颜色对象(索引) scan = glctx.GetUniformLocation(program, "scan") // 获取缩放对象(索引) /* VBO允许usage标示符取以下9种值: gl.STATIC_DRAW gl.STATIC_READ gl.STATIC_COPY gl.DYNAMIC_DRAW gl.DYNAMIC_READ gl.DYNAMIC_COPY gl.STREAM_DRAW gl.STREAM_READ gl.STREAM_COPY "Static”意味着VBO中的数据不会被改变(一次修改,多次使用), "dynamic”意味着数据可以被频繁修改(多次修改,多次使用), "stream”意味着数据每帧都不同(一次修改,一次使用)。 "Draw”意味着数据将会被送往GPU进行绘制, "read”意味着数据会被用户的应用读取, "copy”意味着数据会被用于绘制和读取。 注意在使用VBO时,只有draw是有效的,而copy和read主要将会在像素缓冲区(PBO)和帧缓冲区(FBO)中发挥作用。 系统会根据usage标示符为缓冲区对象分配最佳的存储位置,比如系统会为gl.STATIC_DRAW和gl.STREAM_DRAW分配显存, gl.DYNAMIC_DRAW分配AGP,以及任何_READ_相关的缓冲区对象都会被存储到系统或者AGP中因为这样数据更容易读写 */ positionbuf = glctx.CreateBuffer() glctx.BindBuffer(gl.ARRAY_BUFFER, positionbuf) glctx.BufferData(gl.ARRAY_BUFFER, triangleData, gl.STATIC_DRAW) colorbuf = glctx.CreateBuffer() glctx.BindBuffer(gl.ARRAY_BUFFER, colorbuf) glctx.BufferData(gl.ARRAY_BUFFER, colorData, gl.STATIC_DRAW) images = glutil.NewImages(glctx) fps = debug.NewFPS(images) // fmt.Println(position.String(),color.String(),offset.String())//Attrib(0) Uniform(1) Uniform(0) // TODO(crawshaw): the debug package needs to put GL state init here // Can this be an event.Register call now?? }