func ecrecoverFunc(in []byte) []byte { in = common.RightPadBytes(in, 128) // "in" is (hash, v, r, s), each 32 bytes // but for ecrecover we want (r, s, v) r := common.BytesToBig(in[64:96]) s := common.BytesToBig(in[96:128]) // Treat V as a 256bit integer vbig := common.Bytes2Big(in[32:64]) v := byte(vbig.Uint64()) if !crypto.ValidateSignatureValues(v, r, s) { glog.V(logger.Error).Infof("EC RECOVER FAIL: v, r or s value invalid") return nil } // v needs to be at the end and normalized for libsecp256k1 vbignormal := new(big.Int).Sub(vbig, big.NewInt(27)) vnormal := byte(vbignormal.Uint64()) rsv := append(in[64:128], vnormal) pubKey, err := crypto.Ecrecover(in[:32], rsv) // make sure the public key is a valid one if err != nil { glog.V(logger.Error).Infof("EC RECOVER FAIL: ", err) return nil } // the first byte of pubkey is bitcoin heritage return common.LeftPadBytes(crypto.Sha3(pubKey[1:])[12:], 32) }
// toGoType parses the input and casts it to the proper type defined by the ABI // argument in T. func toGoType(i int, t Argument, output []byte) (interface{}, error) { index := i * 32 if index+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), index+32) } // Parse the given index output and check whether we need to read // a different offset and length based on the type (i.e. string, bytes) var returnOutput []byte switch t.Type.T { case StringTy, BytesTy: // variable arrays are written at the end of the return bytes // parse offset from which we should start reading offset := int(common.BytesToBig(output[index : index+32]).Uint64()) if offset+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), offset+32) } // parse the size up until we should be reading size := int(common.BytesToBig(output[offset : offset+32]).Uint64()) if offset+32+size > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), offset+32+size) } // get the bytes for this return value returnOutput = output[offset+32 : offset+32+size] default: returnOutput = output[index : index+32] } // cast bytes to abi return type switch t.Type.T { case IntTy: return common.BytesToBig(returnOutput), nil case UintTy: return common.BytesToBig(returnOutput), nil case BoolTy: return common.BytesToBig(returnOutput).Uint64() > 0, nil case AddressTy: return common.BytesToAddress(returnOutput), nil case HashTy: return common.BytesToHash(returnOutput), nil case BytesTy, FixedBytesTy: return returnOutput, nil case StringTy: return string(returnOutput), nil } return nil, fmt.Errorf("abi: unknown type %v", t.Type.T) }
// Start Go API. Not important for this version func (c *Contract) Subscribe(key *ecdsa.PrivateKey, serviceId *big.Int, amount, price *big.Int, cb func(*Subscription)) (*types.Transaction, error) { from := crypto.PubkeyToAddress(key.PublicKey) data, err := c.abi.Pack("subscribe", serviceId) if err != nil { return nil, err } statedb, err := c.blockchain.State() if err != nil { return nil, err } transaction, err := types.NewTransaction(statedb.GetNonce(from), contractAddress, amount, big.NewInt(600000), big.NewInt(50000000000), data).SignECDSA(key) if err != nil { return nil, err } evId := c.abi.Events["NewSubscription"].Id() filter := filters.New(c.db) filter.SetAddresses([]common.Address{contractAddress}) filter.SetTopics([][]common.Hash{ // TODO refactor, helper []common.Hash{evId}, []common.Hash{from.Hash()}, []common.Hash{common.BigToHash(serviceId)}, }) filter.SetBeginBlock(0) filter.SetEndBlock(-1) filter.LogCallback = func(log *vm.Log, removed bool) { // TODO: do to and from validation here /* from := log.Topics[1] to := log.Topics[2] */ subscriptionId := common.BytesToHash(log.Data[0:31]) nonce := common.BytesToBig(log.Data[31:]) c.channelMu.Lock() defer c.channelMu.Unlock() channel, exist := c.subs[subscriptionId] if !exist { channel = NewSubscription(c, subscriptionId, from, serviceId, nonce) c.subs[subscriptionId] = channel } cb(channel) } c.filters.Add(filter, filters.PendingLogFilter) return transaction, nil }
func TestExecute(t *testing.T) { ret, _, err := Execute([]byte{ byte(vm.PUSH1), 10, byte(vm.PUSH1), 0, byte(vm.MSTORE), byte(vm.PUSH1), 32, byte(vm.PUSH1), 0, byte(vm.RETURN), }, nil, nil) if err != nil { t.Fatal("didn't expect error", err) } num := common.BytesToBig(ret) if num.Cmp(big.NewInt(10)) != 0 { t.Error("Expected 10, got", num) } }
func TestCall(t *testing.T) { db, _ := ethdb.NewMemDatabase() state, _ := state.New(common.Hash{}, db) address := common.HexToAddress("0x0a") state.SetCode(address, []byte{ byte(vm.PUSH1), 10, byte(vm.PUSH1), 0, byte(vm.MSTORE), byte(vm.PUSH1), 32, byte(vm.PUSH1), 0, byte(vm.RETURN), }) ret, err := Call(address, nil, &Config{State: state}) if err != nil { t.Fatal("didn't expect error", err) } num := common.BytesToBig(ret) if num.Cmp(big.NewInt(10)) != 0 { t.Error("Expected 10, got", num) } }
func opSha3(instr instruction, env Environment, context *Context, memory *Memory, stack *stack) { offset, size := stack.pop(), stack.pop() hash := crypto.Sha3(memory.Get(offset.Int64(), size.Int64())) stack.push(common.BytesToBig(hash)) }
// toGoSliceType prses the input and casts it to the proper slice defined by the ABI // argument in T. func toGoSlice(i int, t Argument, output []byte) (interface{}, error) { index := i * 32 // The slice must, at very least be large enough for the index+32 which is exactly the size required // for the [offset in output, size of offset]. if index+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go slice: insufficient size output %d require %d", len(output), index+32) } elem := t.Type.Elem // first we need to create a slice of the type var refSlice reflect.Value switch elem.T { case IntTy, UintTy, BoolTy: // int, uint, bool can all be of type big int. refSlice = reflect.ValueOf([]*big.Int(nil)) case AddressTy: // address must be of slice Address refSlice = reflect.ValueOf([]common.Address(nil)) case HashTy: // hash must be of slice hash refSlice = reflect.ValueOf([]common.Hash(nil)) case FixedBytesTy: refSlice = reflect.ValueOf([]byte(nil)) default: // no other types are supported return nil, fmt.Errorf("abi: unsupported slice type %v", elem.T) } // get the offset which determines the start of this array ... offset := int(common.BytesToBig(output[index : index+32]).Uint64()) if offset+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go slice: offset %d would go over slice boundary (len=%d)", len(output), offset+32) } slice := output[offset:] // ... starting with the size of the array in elements ... size := int(common.BytesToBig(slice[:32]).Uint64()) slice = slice[32:] // ... and make sure that we've at the very least the amount of bytes // available in the buffer. if size*32 > len(slice) { return nil, fmt.Errorf("abi: cannot marshal in to go slice: insufficient size output %d require %d", len(output), offset+32+size*32) } // reslice to match the required size slice = slice[:(size * 32)] for i := 0; i < size; i++ { var ( inter interface{} // interface type returnOutput = slice[i*32 : i*32+32] // the return output ) // set inter to the correct type (cast) switch elem.T { case IntTy, UintTy: inter = common.BytesToBig(returnOutput) case BoolTy: inter = common.BytesToBig(returnOutput).Uint64() > 0 case AddressTy: inter = common.BytesToAddress(returnOutput) case HashTy: inter = common.BytesToHash(returnOutput) } // append the item to our reflect slice refSlice = reflect.Append(refSlice, reflect.ValueOf(inter)) } // return the interface return refSlice.Interface(), nil }
// toGoType parses the input and casts it to the proper type defined by the ABI // argument in T. func toGoType(i int, t Argument, output []byte) (interface{}, error) { // we need to treat slices differently if (t.Type.IsSlice || t.Type.IsArray) && t.Type.T != BytesTy && t.Type.T != StringTy && t.Type.T != FixedBytesTy { return toGoSlice(i, t, output) } index := i * 32 if index+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), index+32) } // Parse the given index output and check whether we need to read // a different offset and length based on the type (i.e. string, bytes) var returnOutput []byte switch t.Type.T { case StringTy, BytesTy: // variable arrays are written at the end of the return bytes // parse offset from which we should start reading offset := int(common.BytesToBig(output[index : index+32]).Uint64()) if offset+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), offset+32) } // parse the size up until we should be reading size := int(common.BytesToBig(output[offset : offset+32]).Uint64()) if offset+32+size > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), offset+32+size) } // get the bytes for this return value returnOutput = output[offset+32 : offset+32+size] default: returnOutput = output[index : index+32] } // convert the bytes to whatever is specified by the ABI. switch t.Type.T { case IntTy, UintTy: bigNum := common.BytesToBig(returnOutput) // If the type is a integer convert to the integer type // specified by the ABI. switch t.Type.Kind { case reflect.Uint8: return uint8(bigNum.Uint64()), nil case reflect.Uint16: return uint16(bigNum.Uint64()), nil case reflect.Uint32: return uint32(bigNum.Uint64()), nil case reflect.Uint64: return uint64(bigNum.Uint64()), nil case reflect.Int8: return int8(bigNum.Int64()), nil case reflect.Int16: return int16(bigNum.Int64()), nil case reflect.Int32: return int32(bigNum.Int64()), nil case reflect.Int64: return int64(bigNum.Int64()), nil case reflect.Ptr: return bigNum, nil } case BoolTy: return common.BytesToBig(returnOutput).Uint64() > 0, nil case AddressTy: return common.BytesToAddress(returnOutput), nil case HashTy: return common.BytesToHash(returnOutput), nil case BytesTy, FixedBytesTy: return returnOutput, nil case StringTy: return string(returnOutput), nil } return nil, fmt.Errorf("abi: unknown type %v", t.Type.T) }
func (b Bloom) TestBytes(test []byte) bool { return b.Test(common.BytesToBig(test)) }
func TargetHexToDiff(targetHex string) *big.Int { targetBytes := common.FromHex(targetHex) return new(big.Int).Div(pow256, common.BytesToBig(targetBytes)) }