func main() { //This is the part that collects all the data from PyMOL, with all the proper error checking. stdin := bufio.NewReader(os.Stdin) options, err := chemjson.DecodeOptions(stdin) if err != nil { fmt.Fprint(os.Stderr, err.Marshal()) log.Fatal(err) } mol, coordarray, err := chemjson.DecodeMolecule(stdin, options.AtomsPerSel[0], 1) if err != nil { fmt.Fprint(os.Stderr, err.Marshal()) log.Fatal(err) } coords := coordarray[0] var rep *os.File //The program itself for { reportname := strings.Join([]string{"reduce_report", options.SelNames[0], "log"}, ".") rep, err2 := os.Create(reportname) if err2 != nil { break } defer rep.Close() break } var build int if len(options.IntOptions) == 0 || len(options.IntOptions[0]) == 0 { build = 2 } else { build = options.IntOptions[0][0] } newmol, err2 := chem.Reduce(mol, coords, build, rep, "reduce") if err2 != nil { // if err,ok :=err2.(chem.Error); ok{ // fmt.Println(err.Decorate("")) // } // fmt.Println(err2)////////// fmt.Fprint(os.Stderr, chemjson.NewError("process", "chem.Reduce", err2)) //Not always fatal. if newmol == nil { // !strings.Contains(err2.Error(),"invalid argument"){ log.Fatal(err2) } } //Start transfering data back info := new(chemjson.Info) info.Molecules = 1 info.FramesPerMolecule = []int{1} info.AtomsPerMolecule = []int{newmol.Len()} if err2 := info.Send(os.Stdout); err2 != nil { fmt.Fprint(os.Stderr, err2) log.Fatal(err2) } // fmt.Fprint(os.Stdout,mar) // fmt.Fprint(os.Stdout,"\n") if err2 := chemjson.SendMolecule(newmol, newmol.Coords, nil, nil, os.Stdout); err2 != nil { fmt.Fprint(os.Stderr, err2) log.Fatal(err2) } }
func main() { //This is the part that collects all the data from PyMOL, with all the proper error checking. stdin := bufio.NewReader(os.Stdin) options, err := chemjson.DecodeOptions(stdin) if err != nil { fmt.Fprint(os.Stderr, err.Marshal()) log.Fatal(err) } mainName := options.SelNames[0] if len(options.AtomsPerSel) > 1 { for _, v := range options.SelNames[1:] { mainName = mainName + "__" + v //inefficient but there should never be THAT many selections. } } dielectric := options.FloatOptions[0][0] charge := options.IntOptions[0][0] multi := options.IntOptions[0][1] qmprogram := options.StringOptions[0][0] method := options.StringOptions[0][1] calctype := options.StringOptions[0][2] var osidemol *chem.Topology var osidecoords, sidecoords *v3.Matrix var sidelist, sidefrozen []int selindex := 0 total := 0 selections := len(options.AtomsPerSel) if options.BoolOptions[0][0] { //sidechain selections exist sidecoords, osidecoords, osidemol, sidelist, sidefrozen = SideChains(stdin, options) selections-- total += osidemol.Len() selindex++ } fmt.Fprint(os.Stderr, selections) obbmol := make([]*chem.Topology, selections, selections) obbcoords := make([]*v3.Matrix, selections, selections) bbcoords := make([]*v3.Matrix, selections, selections) bblist := make([][]int, selections, selections) bbfrozen := make([][]int, selections, selections) for i := 0; i < selections; i++ { bbcoords[i], obbcoords[i], obbmol[i], bblist[i], bbfrozen[i] = BackBone(stdin, options, selindex) total += obbmol[i].Len() selindex++ fmt.Fprint(os.Stderr, "chetumanga") } //Now we put the juit together bigC := v3.Zeros(total) bigA := chem.NewTopology([]*chem.Atom{}, 0, 0) bigFroz := make([]int, 0, total) setoffset := 0 if options.BoolOptions[0][0] { bigC.SetMatrix(0, 0, osidecoords) setoffset += osidecoords.NVecs() bigA = chem.MergeAtomers(bigA, osidemol) // bigA = osidemol bigFroz = append(bigFroz, sidefrozen...) } for k, v := range obbcoords { bigC.SetMatrix(setoffset, 0, v) bigA = chem.MergeAtomers(bigA, obbmol[k]) tmpfroz := SliceOffset(bbfrozen[k], setoffset) bigFroz = append(bigFroz, tmpfroz...) setoffset += v.NVecs() } bigA.SetCharge(charge) bigA.SetMulti(multi) chem.PDBFileWrite(mainName+"toOPT.pdb", bigC, bigA, nil) ///////////////////////////////////// chem.XYZFileWrite(mainName+"toOPT.xyz", bigC, bigA) ///////////////////////////////////// //Ok, we have now one big matrix and one big atom set, now the optimization calc := new(qm.Calc) if calctype == "Optimization" { calc.Optimize = true } calc.RI = true //some options, including this one, are meaningless for MOPAC calc.CConstraints = bigFroz calc.Dielectric = dielectric calc.SCFTightness = 1 calc.Dispersion = "D3" calc.Method = "TPSS" if method == "Cheap" { calc.BSSE = "gcp" if qmprogram == "ORCA" { calc.Method = "HF-3c" calc.RI = false } else if qmprogram == "MOPAC2012" { calc.Method = "PM6-D3H4 NOMM MOZYME" } else { calc.Basis = "def2-SVP" } } else { calc.Basis = "def2-TZVP" } //We will use the default methods and basis sets of each program. In the case of MOPAC, that is currently PM6-D3H4. var QM qm.Handle switch qmprogram { case "ORCA": orca := qm.NewOrcaHandle() orca.SetnCPU(runtime.NumCPU()) QM = qm.Handle(orca) case "TURBOMOLE": QM = qm.Handle(qm.NewTMHandle()) case "NWCHEM": QM = qm.Handle(qm.NewNWChemHandle()) calc.SCFConvHelp = 1 default: QM = qm.Handle(qm.NewMopacHandle()) } QM.SetName(mainName) QM.BuildInput(bigC, bigA, calc) fmt.Fprint(os.Stderr, options.BoolOptions) if options.BoolOptions[0][2] { return //Dry run } if err2 := QM.Run(true); err != nil { log.Fatal(err2.Error()) } //Now we ran the calculation, we must retrive the geometry and divide the coordinates among the original selections. var newBigC *v3.Matrix info := new(chemjson.Info) //Contains the return info var err2 error if calc.Optimize { newBigC, err2 = QM.OptimizedGeometry(bigA) if err2 != nil { log.Fatal(err2.Error()) } if qmprogram == "NWCHEM" { //NWchem translates/rotates the system before optimizing so we need to superimpose with the original geometry in order for them to match. newBigC, err2 = chem.Super(newBigC, bigC, bigFroz, bigFroz) if err2 != nil { log.Fatal(err2.Error()) } } info.Molecules = len(options.AtomsPerSel) geooffset := 0 if options.BoolOptions[0][0] { tmp := newBigC.View(geooffset, 0, len(sidelist), 3) //This is likely to change when we agree on a change for the gonum API!!!! sidecoords.SetVecs(tmp, sidelist) info.FramesPerMolecule = []int{1} info.AtomsPerMolecule = []int{sidecoords.NVecs()} //I DO NOT understand why the next line is += len(sidelist)-1 instead of len(sidelist), but it works. If a bug appears //take a look at this line, and the equivalent in the for loop that follows. geooffset += (len(sidelist) - 1) } for k, v := range bbcoords { //Take a look here in case of bugs. tmp := newBigC.View(geooffset, 0, len(bblist[k]), 3) //This is likely to change when we agree on a change for the gonum API!!!! v.SetVecs(tmp, bblist[k]) info.FramesPerMolecule = append(info.FramesPerMolecule, 1) info.AtomsPerMolecule = append(info.AtomsPerMolecule, v.NVecs()) geooffset += (len(bblist[k]) - 1) } // for k,v:=range(bbcoords){ // chem.XYZWrite(fmt.Sprintf("opti%d.xyz",k), , newcoords) // } } else { //nothing here, the else part will get deleted after tests } energy, err2 := QM.Energy() if err2 != nil { log.Fatal(err2.Error()) } //Start transfering data back info.Energies = []float64{energy} if err2 := info.Send(os.Stdout); err2 != nil { fmt.Fprint(os.Stderr, err2) log.Fatal(err2) } // fmt.Fprint(os.Stdout,mar) // fmt.Fprint(os.Stdout,"\n") // A loop again to transmit the info. if options.BoolOptions[0][0] { if err := chemjson.SendMolecule(nil, []*v3.Matrix{sidecoords}, nil, nil, os.Stdout); err2 != nil { fmt.Fprint(os.Stderr, err) log.Fatal(err) } } for _, v := range bbcoords { fmt.Fprintln(os.Stderr, "BB transmit!", v.NVecs()) if err := chemjson.SendMolecule(nil, []*v3.Matrix{v}, nil, nil, os.Stdout); err2 != nil { fmt.Fprint(os.Stderr, err) log.Fatal(err) } } }