/* Copy x to y using packed storage. The vector x is an element of S, with the 's' components stored in unpacked storage. On return, x is copied to y with the 's' components stored in packed storage and the off-diagonal entries scaled by sqrt(2). */ func pack(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, opts ...la_.Option) (err error) { /*DEBUGGED*/ err = nil mnl := la_.GetIntOpt("mnl", 0, opts...) offsetx := la_.GetIntOpt("offsetx", 0, opts...) offsety := la_.GetIntOpt("offsety", 0, opts...) nlq := mnl + dims.At("l")[0] + dims.Sum("q") blas.Copy(x, y, &la_.IOpt{"n", nlq}, &la_.IOpt{"offsetx", offsetx}, &la_.IOpt{"offsety", offsety}) iu, ip := offsetx+nlq, offsety+nlq for _, n := range dims.At("s") { for k := 0; k < n; k++ { blas.Copy(x, y, &la_.IOpt{"n", n - k}, &la_.IOpt{"offsetx", iu + k*(n+1)}, &la_.IOpt{"offsety", ip}) y.SetIndex(ip, (y.GetIndex(ip) / math.Sqrt(2.0))) ip += n - k } iu += n * n } np := dims.SumPacked("s") blas.ScalFloat(y, math.Sqrt(2.0), &la_.IOpt{"n", np}, &la_.IOpt{"offset", offsety + nlq}) return }
func sinv(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) (err error) { /*DEBUGGED*/ err = nil // For the nonlinear and 'l' blocks: // // yk o\ xk = yk .\ xk. ind := mnl + dims.At("l")[0] blas.Tbsv(y, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"ldA", 1}) // For the 'q' blocks: // // [ l0 -l1' ] // yk o\ xk = 1/a^2 * [ ] * xk // [ -l1 (a*I + l1*l1')/l0 ] // // where yk = (l0, l1) and a = l0^2 - l1'*l1. for _, m := range dims.At("q") { aa := blas.Nrm2Float(y, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offset", ind + 1}) ee := y.GetIndex(ind) aa = (ee + aa) * (ee - aa) cc := x.GetIndex(ind) dd := blas.DotFloat(x, y, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}) x.SetIndex(ind, cc*ee-dd) blas.ScalFloat(x, aa/ee, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offset", ind + 1}) blas.AxpyFloat(y, x, dd/ee-cc, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}) blas.ScalFloat(x, 1.0/aa, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind}) ind += m } // For the 's' blocks: // // yk o\ xk = xk ./ gamma // // where gammaij = .5 * (yk_i + yk_j). ind2 := ind for _, m := range dims.At("s") { for j := 0; j < m; j++ { u := matrix.FloatVector(y.FloatArray()[ind2+j : ind2+m]) u.Add(y.GetIndex(ind2 + j)) u.Scale(0.5) blas.Tbsv(u, x, &la_.IOpt{"n", m - j}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", ind + j*(m+1)}) } ind += m * m ind2 += m } return }
// The product x := y o y. The 's' components of y are diagonal and // only the diagonals of x and y are stored. func ssqr(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) (err error) { /*DEBUGGED*/ blas.Copy(y, x) ind := mnl + dims.At("l")[0] err = blas.Tbmv(y, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) if err != nil { return } for _, m := range dims.At("q") { v := blas.Nrm2Float(y, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind}) x.SetIndex(ind, v*v) blas.ScalFloat(x, 2.0*y.GetIndex(ind), &la_.IOpt{"n", m - 1}, &la_.IOpt{"offset", ind + 1}) ind += m } err = blas.Tbmv(y, x, &la_.IOpt{"n", dims.Sum("s")}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offseta", ind}, &la_.IOpt{"offsetx", ind}) return }
/* * Generic rank update of diagonal matrix. * diag(D) = diag(D) + alpha * x * y.T * * Arguments: * D N element column or row vector or N-by-N matrix * * x, y N element vectors * * alpha scalar */ func MVUpdateDiag(D, x, y *matrix.FloatMatrix, alpha float64) error { var d *matrix.FloatMatrix var dvec matrix.FloatMatrix if !isVector(x) || !isVector(y) { return errors.New("x, y not vectors") } if D.Rows() > 0 && D.Cols() == D.Rows() { D.Diag(&dvec) d = &dvec } else if isVector(D) { d = D } else { return errors.New("D not a diagonal") } N := d.NumElements() for k := 0; k < N; k++ { val := d.GetIndex(k) val += x.GetIndex(k) * y.GetIndex(k) * alpha d.SetIndex(k, val) } return nil }
/* Returns the Nesterov-Todd scaling W at points s and z, and stores the scaled variable in lmbda. W * z = W^{-T} * s = lmbda. W is a MatrixSet with entries: - W['dnl']: positive vector - W['dnli']: componentwise inverse of W['dnl'] - W['d']: positive vector - W['di']: componentwise inverse of W['d'] - W['v']: lists of 2nd order cone vectors with unit hyperbolic norms - W['beta']: list of positive numbers - W['r']: list of square matrices - W['rti']: list of square matrices. rti[k] is the inverse transpose of r[k]. */ func computeScaling(s, z, lmbda *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) (W *sets.FloatMatrixSet, err error) { /*DEBUGGED*/ err = nil W = sets.NewFloatSet("dnl", "dnli", "d", "di", "v", "beta", "r", "rti") // For the nonlinear block: // // W['dnl'] = sqrt( s[:mnl] ./ z[:mnl] ) // W['dnli'] = sqrt( z[:mnl] ./ s[:mnl] ) // lambda[:mnl] = sqrt( s[:mnl] .* z[:mnl] ) var stmp, ztmp, lmd *matrix.FloatMatrix if mnl > 0 { stmp = matrix.FloatVector(s.FloatArray()[:mnl]) ztmp = matrix.FloatVector(z.FloatArray()[:mnl]) //dnl := stmp.Div(ztmp) //dnl.Apply(dnl, math.Sqrt) dnl := matrix.Sqrt(matrix.Div(stmp, ztmp)) //dnli := dnl.Copy() //dnli.Apply(dnli, func(a float64)float64 { return 1.0/a }) dnli := matrix.Inv(dnl) W.Set("dnl", dnl) W.Set("dnli", dnli) //lmd = stmp.Mul(ztmp) //lmd.Apply(lmd, math.Sqrt) lmd = matrix.Sqrt(matrix.Mul(stmp, ztmp)) lmbda.SetIndexesFromArray(lmd.FloatArray(), matrix.MakeIndexSet(0, mnl, 1)...) } else { // set for empty matrices //W.Set("dnl", matrix.FloatZeros(0, 1)) //W.Set("dnli", matrix.FloatZeros(0, 1)) mnl = 0 } // For the 'l' block: // // W['d'] = sqrt( sk ./ zk ) // W['di'] = sqrt( zk ./ sk ) // lambdak = sqrt( sk .* zk ) // // where sk and zk are the first dims['l'] entries of s and z. // lambda_k is stored in the first dims['l'] positions of lmbda. m := dims.At("l")[0] //td := s.FloatArray() stmp = matrix.FloatVector(s.FloatArray()[mnl : mnl+m]) //zd := z.FloatArray() ztmp = matrix.FloatVector(z.FloatArray()[mnl : mnl+m]) //fmt.Printf(".Sqrt()=\n%v\n", matrix.Div(stmp, ztmp).Sqrt().ToString("%.17f")) //d := stmp.Div(ztmp) //d.Apply(d, math.Sqrt) d := matrix.Div(stmp, ztmp).Sqrt() //di := d.Copy() //di.Apply(di, func(a float64)float64 { return 1.0/a }) di := matrix.Inv(d) //fmt.Printf("d:\n%v\n", d) //fmt.Printf("di:\n%v\n", di) W.Set("d", d) W.Set("di", di) //lmd = stmp.Mul(ztmp) //lmd.Apply(lmd, math.Sqrt) lmd = matrix.Mul(stmp, ztmp).Sqrt() // lmd has indexes mnl:mnl+m and length of m lmbda.SetIndexesFromArray(lmd.FloatArray(), matrix.MakeIndexSet(mnl, mnl+m, 1)...) //fmt.Printf("after l:\n%v\n", lmbda) /* For the 'q' blocks, compute lists 'v', 'beta'. The vector v[k] has unit hyperbolic norm: (sqrt( v[k]' * J * v[k] ) = 1 with J = [1, 0; 0, -I]). beta[k] is a positive scalar. The hyperbolic Householder matrix H = 2*v[k]*v[k]' - J defined by v[k] satisfies (beta[k] * H) * zk = (beta[k] * H) \ sk = lambda_k where sk = s[indq[k]:indq[k+1]], zk = z[indq[k]:indq[k+1]]. lambda_k is stored in lmbda[indq[k]:indq[k+1]]. */ ind := mnl + dims.At("l")[0] var beta *matrix.FloatMatrix for _, k := range dims.At("q") { W.Append("v", matrix.FloatZeros(k, 1)) } beta = matrix.FloatZeros(len(dims.At("q")), 1) W.Set("beta", beta) vset := W.At("v") for k, m := range dims.At("q") { v := vset[k] // a = sqrt( sk' * J * sk ) where J = [1, 0; 0, -I] aa := jnrm2(s, m, ind) // b = sqrt( zk' * J * zk ) bb := jnrm2(z, m, ind) // beta[k] = ( a / b )**1/2 beta.SetIndex(k, math.Sqrt(aa/bb)) // c = sqrt( (sk/a)' * (zk/b) + 1 ) / sqrt(2) c0 := blas.DotFloat(s, z, &la_.IOpt{"n", m}, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"offsety", ind}) cc := math.Sqrt((c0/aa/bb + 1.0) / 2.0) // vk = 1/(2*c) * ( (sk/a) + J * (zk/b) ) blas.CopyFloat(z, v, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m}) blas.ScalFloat(v, -1.0/bb) v.SetIndex(0, -1.0*v.GetIndex(0)) blas.AxpyFloat(s, v, 1.0/aa, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m}) blas.ScalFloat(v, 1.0/2.0/cc) // v[k] = 1/sqrt(2*(vk0 + 1)) * ( vk + e ), e = [1; 0] v.SetIndex(0, v.GetIndex(0)+1.0) blas.ScalFloat(v, (1.0 / math.Sqrt(2.0*v.GetIndex(0)))) /* To get the scaled variable lambda_k d = sk0/a + zk0/b + 2*c lambda_k = [ c; (c + zk0/b)/d * sk1/a + (c + sk0/a)/d * zk1/b ] lambda_k *= sqrt(a * b) */ lmbda.SetIndex(ind, cc) dd := 2*cc + s.GetIndex(ind)/aa + z.GetIndex(ind)/bb blas.CopyFloat(s, lmbda, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) zz := (cc + z.GetIndex(ind)/bb) / dd / aa ss := (cc + s.GetIndex(ind)/aa) / dd / bb blas.ScalFloat(lmbda, zz, &la_.IOpt{"offset", ind + 1}, &la_.IOpt{"n", m - 1}) blas.AxpyFloat(z, lmbda, ss, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) blas.ScalFloat(lmbda, math.Sqrt(aa*bb), &la_.IOpt{"offset", ind}, &la_.IOpt{"n", m}) ind += m //fmt.Printf("after q[%d]:\n%v\n", k, lmbda) } /* For the 's' blocks: compute two lists 'r' and 'rti'. r[k]' * sk^{-1} * r[k] = diag(lambda_k)^{-1} r[k]' * zk * r[k] = diag(lambda_k) where sk and zk are the entries inds[k] : inds[k+1] of s and z, reshaped into symmetric matrices. rti[k] is the inverse of r[k]', so rti[k]' * sk * rti[k] = diag(lambda_k)^{-1} rti[k]' * zk^{-1} * rti[k] = diag(lambda_k). The vectors lambda_k are stored in lmbda[ dims['l'] + sum(dims['q']) : -1 ] */ for _, k := range dims.At("s") { W.Append("r", matrix.FloatZeros(k, k)) W.Append("rti", matrix.FloatZeros(k, k)) } maxs := maxdim(dims.At("s")) work := matrix.FloatZeros(maxs*maxs, 1) Ls := matrix.FloatZeros(maxs*maxs, 1) Lz := matrix.FloatZeros(maxs*maxs, 1) ind2 := ind for k, m := range dims.At("s") { r := W.At("r")[k] rti := W.At("rti")[k] // Factor sk = Ls*Ls'; store Ls in ds[inds[k]:inds[k+1]]. blas.CopyFloat(s, Ls, &la_.IOpt{"offsetx", ind2}, &la_.IOpt{"n", m * m}) lapack.PotrfFloat(Ls, &la_.IOpt{"n", m}, &la_.IOpt{"lda", m}) // Factor zs[k] = Lz*Lz'; store Lz in dz[inds[k]:inds[k+1]]. blas.CopyFloat(z, Lz, &la_.IOpt{"offsetx", ind2}, &la_.IOpt{"n", m * m}) lapack.PotrfFloat(Lz, &la_.IOpt{"n", m}, &la_.IOpt{"lda", m}) // SVD Lz'*Ls = U*diag(lambda_k)*V'. Keep U in work. for i := 0; i < m; i++ { blas.ScalFloat(Ls, 0.0, &la_.IOpt{"offset", i * m}, &la_.IOpt{"n", i}) } blas.CopyFloat(Ls, work, &la_.IOpt{"n", m * m}) blas.TrmmFloat(Lz, work, 1.0, la_.OptTransA, &la_.IOpt{"lda", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"n", m}, &la_.IOpt{"m", m}) lapack.GesvdFloat(work, lmbda, nil, nil, la_.OptJobuO, &la_.IOpt{"lda", m}, &la_.IOpt{"offsetS", ind}, &la_.IOpt{"n", m}, &la_.IOpt{"m", m}) // r = Lz^{-T} * U blas.CopyFloat(work, r, &la_.IOpt{"n", m * m}) blas.TrsmFloat(Lz, r, 1.0, la_.OptTransA, &la_.IOpt{"lda", m}, &la_.IOpt{"n", m}, &la_.IOpt{"m", m}) // rti = Lz * U blas.CopyFloat(work, rti, &la_.IOpt{"n", m * m}) blas.TrmmFloat(Lz, rti, 1.0, &la_.IOpt{"lda", m}, &la_.IOpt{"n", m}, &la_.IOpt{"m", m}) // r := r * diag(sqrt(lambda_k)) // rti := rti * diag(1 ./ sqrt(lambda_k)) for i := 0; i < m; i++ { a := math.Sqrt(lmbda.GetIndex(ind + i)) blas.ScalFloat(r, a, &la_.IOpt{"offset", m * i}, &la_.IOpt{"n", m}) blas.ScalFloat(rti, 1.0/a, &la_.IOpt{"offset", m * i}, &la_.IOpt{"n", m}) } ind += m ind2 += m * m } return }
func updateScaling(W *sets.FloatMatrixSet, lmbda, s, z *matrix.FloatMatrix) (err error) { err = nil var stmp, ztmp *matrix.FloatMatrix /* Nonlinear and 'l' blocks d := d .* sqrt( s ./ z ) lmbda := lmbda .* sqrt(s) .* sqrt(z) */ mnl := 0 dnlset := W.At("dnl") dnliset := W.At("dnli") dset := W.At("d") diset := W.At("di") beta := W.At("beta")[0] if dnlset != nil && dnlset[0].NumElements() > 0 { mnl = dnlset[0].NumElements() } ml := dset[0].NumElements() m := mnl + ml //fmt.Printf("ml=%d, mnl=%d, m=%d'n", ml, mnl, m) stmp = matrix.FloatVector(s.FloatArray()[:m]) stmp.Apply(math.Sqrt) s.SetIndexesFromArray(stmp.FloatArray(), matrix.MakeIndexSet(0, m, 1)...) ztmp = matrix.FloatVector(z.FloatArray()[:m]) ztmp.Apply(math.Sqrt) z.SetIndexesFromArray(ztmp.FloatArray(), matrix.MakeIndexSet(0, m, 1)...) // d := d .* s .* z if len(dnlset) > 0 { blas.TbmvFloat(s, dnlset[0], &la_.IOpt{"n", mnl}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) blas.TbsvFloat(z, dnlset[0], &la_.IOpt{"n", mnl}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) //dnliset[0].Apply(dnlset[0], func(a float64)float64 { return 1.0/a}) //--dnliset[0] = matrix.Inv(dnlset[0]) matrix.Set(dnliset[0], dnlset[0]) dnliset[0].Inv() } blas.TbmvFloat(s, dset[0], &la_.IOpt{"n", ml}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offseta", mnl}) blas.TbsvFloat(z, dset[0], &la_.IOpt{"n", ml}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offseta", mnl}) //diset[0].Apply(dset[0], func(a float64)float64 { return 1.0/a}) //--diset[0] = matrix.Inv(dset[0]) matrix.Set(diset[0], dset[0]) diset[0].Inv() // lmbda := s .* z blas.CopyFloat(s, lmbda, &la_.IOpt{"n", m}) blas.TbmvFloat(z, lmbda, &la_.IOpt{"n", m}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) // 'q' blocks. // Let st and zt be the new variables in the old scaling: // // st = s_k, zt = z_k // // and a = sqrt(st' * J * st), b = sqrt(zt' * J * zt). // // 1. Compute the hyperbolic Householder transformation 2*q*q' - J // that maps st/a to zt/b. // // c = sqrt( (1 + st'*zt/(a*b)) / 2 ) // q = (st/a + J*zt/b) / (2*c). // // The new scaling point is // // wk := betak * sqrt(a/b) * (2*v[k]*v[k]' - J) * q // // with betak = W['beta'][k]. // // 3. The scaled variable: // // lambda_k0 = sqrt(a*b) * c // lambda_k1 = sqrt(a*b) * ( (2vk*vk' - J) * (-d*q + u/2) )_1 // // where // // u = st/a - J*zt/b // d = ( vk0 * (vk'*u) + u0/2 ) / (2*vk0 *(vk'*q) - q0 + 1). // // 4. Update scaling // // v[k] := wk^1/2 // = 1 / sqrt(2*(wk0 + 1)) * (wk + e). // beta[k] *= sqrt(a/b) ind := m for k, v := range W.At("v") { m = v.NumElements() // ln = sqrt( lambda_k' * J * lambda_k ) !! NOT USED!! jnrm2(lmbda, m, ind) // ?? NOT USED ?? // a = sqrt( sk' * J * sk ) = sqrt( st' * J * st ) // s := s / a = st / a aa := jnrm2(s, m, ind) blas.ScalFloat(s, 1.0/aa, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind}) // b = sqrt( zk' * J * zk ) = sqrt( zt' * J * zt ) // z := z / a = zt / b bb := jnrm2(z, m, ind) blas.ScalFloat(z, 1.0/bb, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind}) // c = sqrt( ( 1 + (st'*zt) / (a*b) ) / 2 ) cc := blas.DotFloat(s, z, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"offsety", ind}, &la_.IOpt{"n", m}) cc = math.Sqrt((1.0 + cc) / 2.0) // vs = v' * st / a vs := blas.DotFloat(v, s, &la_.IOpt{"offsety", ind}, &la_.IOpt{"n", m}) // vz = v' * J *zt / b vz := jdot(v, z, m, 0, ind) // vq = v' * q where q = (st/a + J * zt/b) / (2 * c) vq := (vs + vz) / 2.0 / cc // vq = v' * q where q = (st/a + J * zt/b) / (2 * c) vu := vs - vz // lambda_k0 = c lmbda.SetIndex(ind, cc) // wk0 = 2 * vk0 * (vk' * q) - q0 wk0 := 2.0*v.GetIndex(0)*vq - (s.GetIndex(ind)+z.GetIndex(ind))/2.0/cc // d = (v[0] * (vk' * u) - u0/2) / (wk0 + 1) dd := (v.GetIndex(0)*vu - s.GetIndex(ind)/2.0 + z.GetIndex(ind)/2.0) / (wk0 + 1.0) // lambda_k1 = 2 * v_k1 * vk' * (-d*q + u/2) - d*q1 + u1/2 blas.CopyFloat(v, lmbda, &la_.IOpt{"offsetx", 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) blas.ScalFloat(lmbda, (2.0 * (-dd*vq + 0.5*vu)), &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) blas.AxpyFloat(s, lmbda, 0.5*(1.0-dd/cc), &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) blas.AxpyFloat(z, lmbda, 0.5*(1.0+dd/cc), &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) // Scale so that sqrt(lambda_k' * J * lambda_k) = sqrt(aa*bb). blas.ScalFloat(lmbda, math.Sqrt(aa*bb), &la_.IOpt{"offset", ind}, &la_.IOpt{"n", m}) // v := (2*v*v' - J) * q // = 2 * (v'*q) * v' - (J* st/a + zt/b) / (2*c) blas.ScalFloat(v, 2.0*vq) v.SetIndex(0, v.GetIndex(0)-(s.GetIndex(ind)/2.0/cc)) blas.AxpyFloat(s, v, 0.5/cc, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", 1}, &la_.IOpt{"n", m - 1}) blas.AxpyFloat(z, v, -0.5/cc, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m}) // v := v^{1/2} = 1/sqrt(2 * (v0 + 1)) * (v + e) v0 := v.GetIndex(0) + 1.0 v.SetIndex(0, v0) blas.ScalFloat(v, 1.0/math.Sqrt(2.0*v0)) // beta[k] *= ( aa / bb )**1/2 bk := beta.GetIndex(k) beta.SetIndex(k, bk*math.Sqrt(aa/bb)) ind += m } //fmt.Printf("-- end of q:\nz=\n%v\nlmbda=\n%v\n", z.ConvertToString(), lmbda.ConvertToString()) //fmt.Printf("beta=\n%v\n", beta.ConvertToString()) // 's' blocks // // Let st, zt be the updated variables in the old scaling: // // st = Ls * Ls', zt = Lz * Lz'. // // where Ls and Lz are the 's' components of s, z. // // 1. SVD Lz'*Ls = Uk * lambda_k^+ * Vk'. // // 2. New scaling is // // r[k] := r[k] * Ls * Vk * diag(lambda_k^+)^{-1/2} // rti[k] := r[k] * Lz * Uk * diag(lambda_k^+)^{-1/2}. // maxr := 0 for _, m := range W.At("r") { if m.Rows() > maxr { maxr = m.Rows() } } work := matrix.FloatZeros(maxr*maxr, 1) vlensum := 0 for _, m := range W.At("v") { vlensum += m.NumElements() } ind = mnl + ml + vlensum ind2 := ind ind3 := 0 rset := W.At("r") rtiset := W.At("rti") for k, _ := range rset { r := rset[k] rti := rtiset[k] m = r.Rows() //fmt.Printf("m=%d, r=\n%v\nrti=\n%v\n", m, r.ConvertToString(), rti.ConvertToString()) // r := r*sk = r*Ls blas.GemmFloat(r, s, work, 1.0, 0.0, &la_.IOpt{"m", m}, &la_.IOpt{"n", m}, &la_.IOpt{"k", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"ldc", m}, &la_.IOpt{"offsetb", ind2}) //fmt.Printf("1 work=\n%v\n", work.ConvertToString()) blas.CopyFloat(work, r, &la_.IOpt{"n", m * m}) // rti := rti*zk = rti*Lz blas.GemmFloat(rti, z, work, 1.0, 0.0, &la_.IOpt{"m", m}, &la_.IOpt{"n", m}, &la_.IOpt{"k", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"ldc", m}, &la_.IOpt{"offsetb", ind2}) //fmt.Printf("2 work=\n%v\n", work.ConvertToString()) blas.CopyFloat(work, rti, &la_.IOpt{"n", m * m}) // SVD Lz'*Ls = U * lmbds^+ * V'; store U in sk and V' in zk. ' blas.GemmFloat(z, s, work, 1.0, 0.0, la_.OptTransA, &la_.IOpt{"m", m}, &la_.IOpt{"n", m}, &la_.IOpt{"k", m}, &la_.IOpt{"lda", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"ldc", m}, &la_.IOpt{"offseta", ind2}, &la_.IOpt{"offsetb", ind2}) //fmt.Printf("3 work=\n%v\n", work.ConvertToString()) // U = s, Vt = z lapack.GesvdFloat(work, lmbda, s, z, la_.OptJobuAll, la_.OptJobvtAll, &la_.IOpt{"m", m}, &la_.IOpt{"n", m}, &la_.IOpt{"lda", m}, &la_.IOpt{"ldu", m}, &la_.IOpt{"ldvt", m}, &la_.IOpt{"offsets", ind}, &la_.IOpt{"offsetu", ind2}, &la_.IOpt{"offsetvt", ind2}) // r := r*V blas.GemmFloat(r, z, work, 1.0, 0.0, la_.OptTransB, &la_.IOpt{"m", m}, &la_.IOpt{"n", m}, &la_.IOpt{"k", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"ldc", m}, &la_.IOpt{"offsetb", ind2}) //fmt.Printf("4 work=\n%v\n", work.ConvertToString()) blas.CopyFloat(work, r, &la_.IOpt{"n", m * m}) // rti := rti*U blas.GemmFloat(rti, s, work, 1.0, 0.0, &la_.IOpt{"m", m}, &la_.IOpt{"n", m}, &la_.IOpt{"k", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"ldc", m}, &la_.IOpt{"offsetb", ind2}) //fmt.Printf("5 work=\n%v\n", work.ConvertToString()) blas.CopyFloat(work, rti, &la_.IOpt{"n", m * m}) for i := 0; i < m; i++ { a := 1.0 / math.Sqrt(lmbda.GetIndex(ind+i)) blas.ScalFloat(r, a, &la_.IOpt{"n", m}, &la_.IOpt{"offset", m * i}) blas.ScalFloat(rti, a, &la_.IOpt{"n", m}, &la_.IOpt{"offset", m * i}) } ind += m ind2 += m * m ind3 += m // !!NOT USED: ind3!! } //fmt.Printf("-- end of s:\nz=\n%v\nlmbda=\n%v\n", z.ConvertToString(), lmbda.ConvertToString()) return }
/* Evaluates x := H(lambda^{1/2}) * x (inverse is 'N') x := H(lambda^{-1/2}) * x (inverse is 'I'). H is the Hessian of the logarithmic barrier. */ func scale2(lmbda, x *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int, inverse bool) (err error) { err = nil //var minor int = 0 //if ! checkpnt.MinorEmpty() { // minor = checkpnt.MinorTop() //} //fmt.Printf("\n%d.%04d scale2 x=\n%v\nlmbda=\n%v\n", checkpnt.Major(), minor, // x.ToString("%.17f"), lmbda.ToString("%.17f")) //if ! checkpnt.MinorEmpty() { // checkpnt.Check("000scale2", minor) //} // For the nonlinear and 'l' blocks, // // xk := xk ./ l (inverse is 'N') // xk := xk .* l (inverse is 'I') // // where l is lmbda[:mnl+dims['l']]. ind := mnl + dims.Sum("l") if !inverse { blas.TbsvFloat(lmbda, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) } else { blas.TbmvFloat(lmbda, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) } //if ! checkpnt.MinorEmpty() { // checkpnt.Check("010scale2", minor) //} // For 'q' blocks, if inverse is 'N', // // xk := 1/a * [ l'*J*xk; // xk[1:] - (xk[0] + l'*J*xk) / (l[0] + 1) * l[1:] ]. // // If inverse is 'I', // // xk := a * [ l'*xk; // xk[1:] + (xk[0] + l'*xk) / (l[0] + 1) * l[1:] ]. // // a = sqrt(lambda_k' * J * lambda_k), l = lambda_k / a. for _, m := range dims.At("q") { var lx, a, c, x0 float64 a = jnrm2(lmbda, m, ind) //&la_.IOpt{"n", m}, &la_.IOpt{"offset", ind}) if !inverse { lx = jdot(lmbda, x, m, ind, ind) //&la_.IOpt{"n", m}, &la_.IOpt{"offsetx", ind}, //&la_.IOpt{"offsety", ind}) lx /= a } else { lx = blas.DotFloat(lmbda, x, &la_.IOpt{"n", m}, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"offsety", ind}) lx /= a } x0 = x.GetIndex(ind) x.SetIndex(ind, lx) c = (lx + x0) / (lmbda.GetIndex(ind)/a + 1.0) / a if !inverse { c *= -1.0 } blas.AxpyFloat(lmbda, x, c, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}) if !inverse { a = 1.0 / a } blas.ScalFloat(x, a, &la_.IOpt{"offset", ind}, &la_.IOpt{"n", m}) ind += m } //if ! checkpnt.MinorEmpty() { // checkpnt.Check("020scale2", minor) //} // For the 's' blocks, if inverse is 'N', // // xk := vec( diag(l)^{-1/2} * mat(xk) * diag(k)^{-1/2}). // // If inverse is true, // // xk := vec( diag(l)^{1/2} * mat(xk) * diag(k)^{1/2}). // // where l is kth block of lambda. // // We scale upper and lower triangular part of mat(xk) because the // inverse operation will be applied to nonsymmetric matrices. ind2 := ind sdims := dims.At("s") for k := 0; k < len(sdims); k++ { m := sdims[k] scaleF := func(v, x float64) float64 { return math.Sqrt(v) * math.Sqrt(x) } for j := 0; j < m; j++ { c := matrix.FloatVector(lmbda.FloatArray()[ind2 : ind2+m]) c.ApplyConst(lmbda.GetIndex(ind2+j), scaleF) if !inverse { blas.Tbsv(c, x, &la_.IOpt{"n", m}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", ind + j*m}) } else { blas.Tbmv(c, x, &la_.IOpt{"n", m}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", ind + j*m}) } } ind += m * m ind2 += m } //if ! checkpnt.MinorEmpty() { // checkpnt.Check("030scale2", minor) //} return }
// The product x := (y o x). If diag is 'D', the 's' part of y is // diagonal and only the diagonal is stored. func sprod(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int, opts ...la_.Option) (err error) { err = nil diag := la_.GetStringOpt("diag", "N", opts...) // For the nonlinear and 'l' blocks: // // yk o xk = yk .* xk. ind := mnl + dims.At("l")[0] err = blas.Tbmv(y, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) if err != nil { return } //fmt.Printf("Sprod l:x=\n%v\n", x) // For 'q' blocks: // // [ l0 l1' ] // yk o xk = [ ] * xk // [ l1 l0*I ] // // where yk = (l0, l1). for _, m := range dims.At("q") { dd := blas.DotFloat(x, y, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"offsety", ind}, &la_.IOpt{"n", m}) //fmt.Printf("dd=%v\n", dd) alpha := y.GetIndex(ind) //fmt.Printf("scal=%v\n", alpha) blas.ScalFloat(x, alpha, &la_.IOpt{"offset", ind + 1}, &la_.IOpt{"n", m - 1}) alpha = x.GetIndex(ind) //fmt.Printf("axpy=%v\n", alpha) blas.AxpyFloat(y, x, alpha, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) x.SetIndex(ind, dd) ind += m } //fmt.Printf("Sprod q :x=\n%v\n", x) // For the 's' blocks: // // yk o sk = .5 * ( Yk * mat(xk) + mat(xk) * Yk ) // // where Yk = mat(yk) if diag is 'N' and Yk = diag(yk) if diag is 'D'. if diag[0] == 'N' { // DEBUGGED maxm := maxdim(dims.At("s")) A := matrix.FloatZeros(maxm, maxm) for _, m := range dims.At("s") { blas.Copy(x, A, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m * m}) for i := 0; i < m-1; i++ { // i < m-1 --> i < m symm(A, m, 0) symm(y, m, ind) } err = blas.Syr2kFloat(A, y, x, 0.5, 0.0, &la_.IOpt{"n", m}, &la_.IOpt{"k", m}, &la_.IOpt{"lda", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"ldc", m}, &la_.IOpt{"offsetb", ind}, &la_.IOpt{"offsetc", ind}) if err != nil { return } ind += m * m } //fmt.Printf("Sprod diag=N s:x=\n%v\n", x) } else { ind2 := ind for _, m := range dims.At("s") { for i := 0; i < m; i++ { // original: u = 0.5 * ( y[ind2+i:ind2+m] + y[ind2+i] ) // creates matrix of elements: [ind2+i ... ind2+m] then // element wisely adds y[ind2+i] and scales by 0.5 iset := matrix.MakeIndexSet(ind2+i, ind2+m, 1) u := matrix.FloatVector(y.GetIndexes(iset...)) u.Add(y.GetIndex(ind2 + i)) u.Scale(0.5) err = blas.Tbmv(u, x, &la_.IOpt{"n", m - i}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", ind + i*(m+1)}) if err != nil { return } } ind += m * m ind2 += m } //fmt.Printf("Sprod diag=T s:x=\n%v\n", x) } return }