// Partial derivative of F (some function of env) with respect to Mu_h; // T and V held constant. func dFdMu_h(env *tempAll.Environment, F envFunc) (float64, error) { ct := 0 // G gets F given Mu_h (allow x to vary; constant Beta) G := func(Mu_h float64) (float64, error) { ct += 1 // save the environment state before changing it // (don't want one call of F to affect the next) oD1, oMu_h, oX, oMu_b := env.D1, env.Mu_h, env.X, env.Mu_b env.Mu_h = Mu_h // fix free variables2 eps := 1e-9 _, err := D1F0XSolve(env, eps, eps) if err != nil { return 0.0, err } vF, err := F(env) if err != nil { return 0.0, err } // restore the environment env.D1, env.Mu_h, env.X, env.Mu_b = oD1, oMu_h, oX, oMu_b return vF, nil } h := 1e-4 epsAbs := 1e-5 deriv, err := solve.OneDimDerivative(G, env.Mu_h, h, epsAbs) //fmt.Println("dF_dMu ct", ct) return deriv, err }
func SolveNoninteracting(env *tempAll.Environment, epsAbs, epsRel float64) (vec.Vector, error) { env.F0 = 0.0 env.Mu_h = 0.3 env.Beta = 50.0 system, start := NoninteractingSystem(env) solution, err := solve.MultiDim(system, start, epsAbs, epsRel) if err != nil { return nil, err } return solution, nil }
// For use with solve.Iterative: func CritTempStages(env *tempAll.Environment) ([]solve.DiffSystem, []vec.Vector, func([]vec.Vector)) { vars0 := []string{"D1", "Mu_h"} vars1 := []string{"Beta"} diffD1 := tempPair.AbsErrorD1(env, vars0) diffMu_h := tempPair.AbsErrorBeta(env, vars0) system0 := solve.Combine([]solve.Diffable{diffD1, diffMu_h}) diffBeta := AbsErrorBeta(env, vars1) system1 := solve.Combine([]solve.Diffable{diffBeta}) stages := []solve.DiffSystem{system0, system1} start := []vec.Vector{[]float64{env.D1, env.Mu_h}, []float64{env.Beta}} accept := func(x []vec.Vector) { env.D1 = x[0][0] env.Mu_h = x[0][1] env.Beta = x[1][0] } return stages, start, accept }