Exemplo n.º 1
0
/*
   Copy x to y using packed storage.

   The vector x is an element of S, with the 's' components stored in
   unpacked storage.  On return, x is copied to y with the 's' components
   stored in packed storage and the off-diagonal entries scaled by
   sqrt(2).
*/
func pack(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, opts ...la_.Option) (err error) {
	/*DEBUGGED*/
	err = nil
	mnl := la_.GetIntOpt("mnl", 0, opts...)
	offsetx := la_.GetIntOpt("offsetx", 0, opts...)
	offsety := la_.GetIntOpt("offsety", 0, opts...)

	nlq := mnl + dims.At("l")[0] + dims.Sum("q")
	blas.Copy(x, y, &la_.IOpt{"n", nlq}, &la_.IOpt{"offsetx", offsetx},
		&la_.IOpt{"offsety", offsety})

	iu, ip := offsetx+nlq, offsety+nlq
	for _, n := range dims.At("s") {
		for k := 0; k < n; k++ {
			blas.Copy(x, y, &la_.IOpt{"n", n - k}, &la_.IOpt{"offsetx", iu + k*(n+1)},
				&la_.IOpt{"offsety", ip})
			y.SetIndex(ip, (y.GetIndex(ip) / math.Sqrt(2.0)))
			ip += n - k
		}
		iu += n * n
	}
	np := dims.SumPacked("s")
	blas.ScalFloat(y, math.Sqrt(2.0), &la_.IOpt{"n", np}, &la_.IOpt{"offset", offsety + nlq})
	return
}
Exemplo n.º 2
0
// Solves a pair of primal and dual cone programs using custom KKT solver and constraint
// interfaces MatrixG and MatrixA
//
func ConeLpCustomMatrix(c *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix,
	A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver,
	solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {

	err = nil

	if c == nil || c.Cols() > 1 {
		err = errors.New("'c' must be matrix with 1 column")
		return
	}
	if h == nil || h.Cols() > 1 {
		err = errors.New("'h' must be matrix with 1 column")
		return
	}

	if err = checkConeLpDimensions(dims); err != nil {
		return
	}

	cdim := dims.Sum("l", "q") + dims.SumSquared("s")
	cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")
	//cdim_diag := dims.Sum("l", "q", "s")

	if h.Rows() != cdim {
		err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
		return
	}

	// Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G.
	indq := make([]int, 0)
	indq = append(indq, dims.At("l")[0])
	for _, k := range dims.At("q") {
		indq = append(indq, indq[len(indq)-1]+k)
	}

	// Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G.
	inds := make([]int, 0)
	inds = append(inds, indq[len(indq)-1])
	for _, k := range dims.At("s") {
		inds = append(inds, inds[len(inds)-1]+k*k)
	}

	// Check b and set defaults if it is nil
	if b == nil {
		b = matrix.FloatZeros(0, 1)
	}
	if b.Cols() != 1 {
		estr := fmt.Sprintf("'b' must be a matrix with 1 column")
		err = errors.New(estr)
		return
	}
	if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() {
		err = errors.New("Rank(A) < p or Rank([G; A]) < n")
		return
	}

	if kktsolver == nil {
		err = errors.New("nil kktsolver not allowed.")
		return
	}

	var mA MatrixVarA
	var mG MatrixVarG
	if G == nil {
		mG = &matrixVarG{matrix.FloatZeros(0, c.Rows()), dims}
	} else {
		mG = &matrixIfG{G}
	}
	if A == nil {
		mA = &matrixVarA{matrix.FloatZeros(0, c.Rows())}
	} else {
		mA = &matrixIfA{A}
	}
	var mc = &matrixVar{c}
	var mb = &matrixVar{b}

	return conelp_problem(mc, mG, h, mA, mb, dims, kktsolver, solopts, primalstart, dualstart)
}
Exemplo n.º 3
0
// Solves a pair of primal and dual cone programs  using custom KKT solver.
//
func ConeLpCustomKKT(c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet,
	kktsolver KKTConeSolver, solopts *SolverOptions, primalstart,
	dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {

	if c == nil || c.Cols() > 1 {
		err = errors.New("'c' must be matrix with 1 column")
		return
	}
	if h == nil {
		h = matrix.FloatZeros(0, 1)
	}
	if h.Cols() > 1 {
		err = errors.New("'h' must be matrix with 1 column")
		return
	}

	if dims == nil {
		dims = sets.NewDimensionSet("l", "q", "s")
		dims.Set("l", []int{h.Rows()})
	}
	cdim := dims.Sum("l", "q") + dims.SumSquared("s")
	cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")
	//cdim_diag := dims.Sum("l", "q", "s")

	if G == nil {
		G = matrix.FloatZeros(0, c.Rows())
	}
	if !G.SizeMatch(cdim, c.Rows()) {
		estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows())
		err = errors.New(estr)
		return
	}

	// Check A and set defaults if it is nil
	if A == nil {
		// zeros rows reduces Gemv to vector products
		A = matrix.FloatZeros(0, c.Rows())
	}
	if A.Cols() != c.Rows() {
		estr := fmt.Sprintf("'A' must have %d columns", c.Rows())
		err = errors.New(estr)
		return
	}

	// Check b and set defaults if it is nil
	if b == nil {
		b = matrix.FloatZeros(0, 1)
	}
	if b.Cols() != 1 {
		estr := fmt.Sprintf("'b' must be a matrix with 1 column")
		err = errors.New(estr)
		return
	}
	if b.Rows() != A.Rows() {
		estr := fmt.Sprintf("'b' must have length %d", A.Rows())
		err = errors.New(estr)
		return
	}

	if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() {
		err = errors.New("Rank(A) < p or Rank([G; A]) < n")
		return
	}

	mA := &matrixVarA{A}
	mG := &matrixVarG{G, dims}
	mc := &matrixVar{c}
	mb := &matrixVar{b}

	return conelp_problem(mc, mG, h, mA, mb, dims, kktsolver, solopts, primalstart, dualstart)
}
Exemplo n.º 4
0
// Solves a pair of primal and dual cone programs
//
//        minimize    c'*x
//        subject to  G*x + s = h
//                    A*x = b
//                    s >= 0
//
//        maximize    -h'*z - b'*y
//        subject to  G'*z + A'*y + c = 0
//                    z >= 0.
//
// The inequalities are with respect to a cone C defined as the Cartesian
// product of N + M + 1 cones:
//
//        C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}.
//
// The first cone C_0 is the nonnegative orthant of dimension ml.
// The next N cones are second order cones of dimension r[0], ..., r[N-1].
// The second order cone of dimension m is defined as
//
//        { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }.
//
// The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0.
//
// The structure of C is specified by DimensionSet dims which holds following sets
//
//   dims.At("l")  l, the dimension of the nonnegative orthant (array of length 1)
//   dims.At("q")  r[0], ... r[N-1], list with the dimesions of the second-order cones
//   dims.At("s")  t[0], ... t[M-1], array with the dimensions of the positive
//                 semidefinite cones
//
// The default value for dims is l: []int{G.Rows()}, q: []int{}, s: []int{}.
//
// Arguments primalstart, dualstart are optional starting points for primal and
// dual problems. If non-nil then primalstart is a FloatMatrixSet having two entries.
//
//  primalstart.At("x")[0]  starting point for x
//  primalstart.At("s")[0]  starting point for s
//  dualstart.At("y")[0]    starting point for y
//  dualstart.At("z")[0]    starting point for z
//
// On exit Solution contains the result and information about the accurancy of the
// solution. if SolutionStatus is Optimal then Solution.Result contains solutions
// for the problems.
//
//   Result.At("x")[0]  solution for x
//   Result.At("y")[0]  solution for y
//   Result.At("s")[0]  solution for s
//   Result.At("z")[0]  solution for z
//
func ConeLp(c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions,
	primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {

	if c == nil || c.Cols() > 1 {
		err = errors.New("'c' must be matrix with 1 column")
		return
	}
	if c.Rows() < 1 {
		err = errors.New("No variables, 'c' must have at least one row")
		return

	}
	if h == nil || h.Cols() > 1 {
		err = errors.New("'h' must be matrix with 1 column")
		return
	}

	if dims == nil {
		dims = sets.NewDimensionSet("l", "q", "s")
		dims.Set("l", []int{h.Rows()})
	}

	cdim := dims.Sum("l", "q") + dims.SumSquared("s")
	cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")

	if h.Rows() != cdim {
		err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
		return
	}

	if G == nil {
		G = matrix.FloatZeros(0, c.Rows())
	}
	if !G.SizeMatch(cdim, c.Rows()) {
		estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows())
		err = errors.New(estr)
		return
	}

	// Check A and set defaults if it is nil
	if A == nil {
		// zeros rows reduces Gemv to vector products
		A = matrix.FloatZeros(0, c.Rows())
	}
	if A.Cols() != c.Rows() {
		estr := fmt.Sprintf("'A' must have %d columns", c.Rows())
		err = errors.New(estr)
		return
	}

	// Check b and set defaults if it is nil
	if b == nil {
		b = matrix.FloatZeros(0, 1)
	}
	if b.Cols() != 1 {
		estr := fmt.Sprintf("'b' must be a matrix with 1 column")
		err = errors.New(estr)
		return
	}
	if b.Rows() != A.Rows() {
		estr := fmt.Sprintf("'b' must have length %d", A.Rows())
		err = errors.New(estr)
		return
	}

	if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() {
		err = errors.New("Rank(A) < p or Rank([G; A]) < n")
		return
	}

	solvername := solopts.KKTSolverName
	if len(solvername) == 0 {
		if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 {
			solvername = "qr"
		} else {
			solvername = "chol2"
		}
	}

	var factor kktFactor
	var kktsolver KKTConeSolver = nil
	if kktfunc, ok := lpsolvers[solvername]; ok {
		// kkt function returns us problem spesific factor function.
		factor, err = kktfunc(G, dims, A, 0)
		if err != nil {
			return nil, err
		}
		kktsolver = func(W *sets.FloatMatrixSet) (KKTFunc, error) {
			return factor(W, nil, nil)
		}
	} else {
		err = errors.New(fmt.Sprintf("solver '%s' not known", solvername))
		return
	}
	//return ConeLpCustom(c, &mG, h, &mA, b, dims, kktsolver, solopts, primalstart, dualstart)
	c_e := &matrixVar{c}
	G_e := &matrixVarG{G, dims}
	A_e := &matrixVarA{A}
	b_e := &matrixVar{b}
	return conelp_problem(c_e, G_e, h, A_e, b_e, dims, kktsolver, solopts, primalstart, dualstart)
}
Exemplo n.º 5
0
// Solution of KKT equations by a dense LDL factorization of the
// 3 x 3 system.
//
// Returns a function that (1) computes the LDL factorization of
//
// [ H           A'   GG'*W^{-1} ]
// [ A           0    0          ],
// [ W^{-T}*GG   0   -I          ]
//
// given H, Df, W, where GG = [Df; G], and (2) returns a function for
// solving
//
//  [ H     A'   GG'   ]   [ ux ]   [ bx ]
//  [ A     0    0     ] * [ uy ] = [ by ].
//  [ GG    0   -W'*W  ]   [ uz ]   [ bz ]
//
// H is n x n,  A is p x n, Df is mnl x n, G is N x n where
// N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] ).
//
func kktLdl(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) {

	p, n := A.Size()
	ldK := n + p + mnl + dims.At("l")[0] + dims.Sum("q") + dims.SumPacked("s")
	K := matrix.FloatZeros(ldK, ldK)
	ipiv := make([]int32, ldK)
	u := matrix.FloatZeros(ldK, 1)
	g := matrix.FloatZeros(mnl+G.Rows(), 1)
	//checkpnt.AddMatrixVar("u", u)
	//checkpnt.AddMatrixVar("K", K)

	factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) {
		var err error = nil
		// Zero K for each call.
		blas.ScalFloat(K, 0.0)
		if H != nil {
			K.SetSubMatrix(0, 0, H)
		}
		K.SetSubMatrix(n, 0, A)
		for k := 0; k < n; k++ {
			// g is (mnl + G.Rows(), 1) matrix, Df is (mnl, n), G is (N, n)
			if mnl > 0 {
				// set values g[0:mnl] = Df[,k]
				g.SetIndexesFromArray(Df.GetColumnArray(k, nil), matrix.MakeIndexSet(0, mnl, 1)...)
			}
			// set values g[mnl:] = G[,k]
			g.SetIndexesFromArray(G.GetColumnArray(k, nil), matrix.MakeIndexSet(mnl, mnl+g.Rows(), 1)...)
			scale(g, W, true, true)
			if err != nil {
				//fmt.Printf("scale error: %s\n", err)
			}
			pack(g, K, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsety", k*ldK + n + p})
		}
		setDiagonal(K, n+p, n+n, ldK, ldK, -1.0)
		err = lapack.Sytrf(K, ipiv)
		if err != nil {
			return nil, err
		}

		solve := func(x, y, z *matrix.FloatMatrix) (err error) {
			// Solve
			//
			//     [ H          A'   GG'*W^{-1} ]   [ ux   ]   [ bx        ]
			//     [ A          0    0          ] * [ uy   [ = [ by        ]
			//     [ W^{-T}*GG  0   -I          ]   [ W*uz ]   [ W^{-T}*bz ]
			//
			// and return ux, uy, W*uz.
			//
			// On entry, x, y, z contain bx, by, bz.  On exit, they contain
			// the solution ux, uy, W*uz.
			err = nil
			blas.Copy(x, u)
			blas.Copy(y, u, &la.IOpt{"offsety", n})
			err = scale(z, W, true, true)
			if err != nil {
				return
			}
			err = pack(z, u, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsety", n + p})
			if err != nil {
				return
			}

			err = lapack.Sytrs(K, u, ipiv)
			if err != nil {
				return
			}

			blas.Copy(u, x, &la.IOpt{"n", n})
			blas.Copy(u, y, &la.IOpt{"n", p}, &la.IOpt{"offsetx", n})
			err = unpack(u, z, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsetx", n + p})
			return
		}
		return solve, err
	}
	return factor, nil
}
Exemplo n.º 6
0
//    Solution of KKT equations by reduction to a 2 x 2 system, a QR
//    factorization to eliminate the equality constraints, and a dense
//    Cholesky factorization of order n-p.
//
//    Computes the QR factorization
//
//        A' = [Q1, Q2] * [R; 0]
//
//    and returns a function that (1) computes the Cholesky factorization
//
//        Q_2^T * (H + GG^T * W^{-1} * W^{-T} * GG) * Q2 = L * L^T,
//
//    given H, Df, W, where GG = [Df; G], and (2) returns a function for
//    solving
//
//        [ H    A'   GG'    ]   [ ux ]   [ bx ]
//        [ A    0    0      ] * [ uy ] = [ by ].
//        [ GG   0    -W'*W  ]   [ uz ]   [ bz ]
//
//    H is n x n,  A is p x n, Df is mnl x n, G is N x n where
//    N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] ).
//
func kktChol(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) {

	p, n := A.Size()
	cdim := mnl + dims.Sum("l", "q") + dims.SumSquared("s")
	cdim_pckd := mnl + dims.Sum("l", "q") + dims.SumPacked("s")

	QA := A.Transpose()
	tauA := matrix.FloatZeros(p, 1)
	lapack.Geqrf(QA, tauA)

	Gs := matrix.FloatZeros(cdim, n)
	K := matrix.FloatZeros(n, n)
	bzp := matrix.FloatZeros(cdim_pckd, 1)
	yy := matrix.FloatZeros(p, 1)
	checkpnt.AddMatrixVar("tauA", tauA)
	checkpnt.AddMatrixVar("Gs", Gs)
	checkpnt.AddMatrixVar("K", K)

	factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) {
		// Compute
		//
		//     K = [Q1, Q2]' * (H + GG' * W^{-1} * W^{-T} * GG) * [Q1, Q2]
		//
		// and take the Cholesky factorization of the 2,2 block
		//
		//     Q_2' * (H + GG^T * W^{-1} * W^{-T} * GG) * Q2.

		var err error = nil
		minor := 0
		if !checkpnt.MinorEmpty() {
			minor = checkpnt.MinorTop()
		}
		// Gs = W^{-T} * GG in packed storage.
		if mnl > 0 {
			Gs.SetSubMatrix(0, 0, Df)
		}
		Gs.SetSubMatrix(mnl, 0, G)
		checkpnt.Check("00factor_chol", minor)
		scale(Gs, W, true, true)
		pack2(Gs, dims, mnl)
		//checkpnt.Check("10factor_chol", minor)

		// K = [Q1, Q2]' * (H + Gs' * Gs) * [Q1, Q2].
		blas.SyrkFloat(Gs, K, 1.0, 0.0, la.OptTrans, &la.IOpt{"k", cdim_pckd})
		if H != nil {
			K.SetSubMatrix(0, 0, matrix.Plus(H, K.GetSubMatrix(0, 0, H.Rows(), H.Cols())))
		}
		//checkpnt.Check("20factor_chol", minor)
		symm(K, n, 0)
		lapack.Ormqr(QA, tauA, K, la.OptLeft, la.OptTrans)
		lapack.Ormqr(QA, tauA, K, la.OptRight)
		//checkpnt.Check("30factor_chol", minor)

		// Cholesky factorization of 2,2 block of K.
		lapack.Potrf(K, &la.IOpt{"n", n - p}, &la.IOpt{"offseta", p * (n + 1)})
		checkpnt.Check("40factor_chol", minor)

		solve := func(x, y, z *matrix.FloatMatrix) (err error) {
			// Solve
			//
			//     [ 0          A'  GG'*W^{-1} ]   [ ux   ]   [ bx        ]
			//     [ A          0   0          ] * [ uy   ] = [ by        ]
			//     [ W^{-T}*GG  0   -I         ]   [ W*uz ]   [ W^{-T}*bz ]
			//
			// and return ux, uy, W*uz.
			//
			// On entry, x, y, z contain bx, by, bz.  On exit, they contain
			// the solution ux, uy, W*uz.
			//
			// If we change variables ux = Q1*v + Q2*w, the system becomes
			//
			//     [ K11 K12 R ]   [ v  ]   [Q1'*(bx+GG'*W^{-1}*W^{-T}*bz)]
			//     [ K21 K22 0 ] * [ w  ] = [Q2'*(bx+GG'*W^{-1}*W^{-T}*bz)]
			//     [ R^T 0   0 ]   [ uy ]   [by                           ]
			//
			//     W*uz = W^{-T} * ( GG*ux - bz ).
			minor := 0
			if !checkpnt.MinorEmpty() {
				minor = checkpnt.MinorTop()
			}

			// bzp := W^{-T} * bz in packed storage
			scale(z, W, true, true)
			pack(z, bzp, dims, &la.IOpt{"mnl", mnl})

			// x := [Q1, Q2]' * (x + Gs' * bzp)
			//    = [Q1, Q2]' * (bx + Gs' * W^{-T} * bz)
			blas.GemvFloat(Gs, bzp, x, 1.0, 1.0, la.OptTrans, &la.IOpt{"m", cdim_pckd})
			lapack.Ormqr(QA, tauA, x, la.OptLeft, la.OptTrans)

			// y := x[:p]
			//    = Q1' * (bx + Gs' * W^{-T} * bz)
			blas.Copy(y, yy)
			blas.Copy(x, y, &la.IOpt{"n", p})

			// x[:p] := v = R^{-T} * by
			blas.Copy(yy, x)
			lapack.Trtrs(QA, x, la.OptUpper, la.OptTrans, &la.IOpt{"n", p})

			// x[p:] := K22^{-1} * (x[p:] - K21*x[:p])
			//        = K22^{-1} * (Q2' * (bx + Gs' * W^{-T} * bz) - K21*v)
			blas.GemvFloat(K, x, x, -1.0, 1.0, &la.IOpt{"m", n - p}, &la.IOpt{"n", p},
				&la.IOpt{"offseta", p}, &la.IOpt{"offsety", p})
			lapack.Potrs(K, x, &la.IOpt{"n", n - p}, &la.IOpt{"offseta", p * (n + 1)},
				&la.IOpt{"offsetb", p})

			// y := y - [K11, K12] * x
			//    = Q1' * (bx + Gs' * W^{-T} * bz) - K11*v - K12*w
			blas.GemvFloat(K, x, y, -1.0, 1.0, &la.IOpt{"m", p}, &la.IOpt{"n", n})

			// y := R^{-1}*y
			//    = R^{-1} * (Q1' * (bx + Gs' * W^{-T} * bz) - K11*v
			//      - K12*w)
			lapack.Trtrs(QA, y, la.OptUpper, &la.IOpt{"n", p})

			// x := [Q1, Q2] * x
			lapack.Ormqr(QA, tauA, x, la.OptLeft)

			// bzp := Gs * x - bzp.
			//      = W^{-T} * ( GG*ux - bz ) in packed storage.
			// Unpack and copy to z.
			blas.GemvFloat(Gs, x, bzp, 1.0, -1.0, &la.IOpt{"m", cdim_pckd})
			unpack(bzp, z, dims, &la.IOpt{"mnl", mnl})

			checkpnt.Check("90solve_chol", minor)
			return nil
		}
		return solve, err
	}
	return factor, nil
}
Exemplo n.º 7
0
// Solution of KKT equations with zero 1,1 block, by eliminating the
// equality constraints via a QR factorization, and solving the
// reduced KKT system by another QR factorization.
//
// Computes the QR factorization
//
//        A' = [Q1, Q2] * [R1; 0]
//
// and returns a function that (1) computes the QR factorization
//
//        W^{-T} * G * Q2 = Q3 * R3
//
// (with columns of W^{-T}*G in packed storage), and (2) returns a function for solving
//
//        [ 0    A'   G'    ]   [ ux ]   [ bx ]
//        [ A    0    0     ] * [ uy ] = [ by ].
//        [ G    0   -W'*W  ]   [ uz ]   [ bz ]
//
// A is p x n and G is N x n where N = dims['l'] + sum(dims['q']) +
// sum( k**2 for k in dims['s'] ).
//
func kktQr(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) {

	p, n := A.Size()
	cdim := dims.Sum("l", "q") + dims.SumSquared("s")
	cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")

	QA := A.Transpose()
	tauA := matrix.FloatZeros(p, 1)
	lapack.Geqrf(QA, tauA)

	Gs := matrix.FloatZeros(cdim, n)
	tauG := matrix.FloatZeros(n-p, 1)
	u := matrix.FloatZeros(cdim_pckd, 1)
	vv := matrix.FloatZeros(n, 1)
	w := matrix.FloatZeros(cdim_pckd, 1)
	checkpnt.AddMatrixVar("tauA", tauA)
	checkpnt.AddMatrixVar("tauG", tauG)
	checkpnt.AddMatrixVar("Gs", Gs)
	checkpnt.AddMatrixVar("qr_u", u)
	checkpnt.AddMatrixVar("qr_vv", vv)

	factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) {
		var err error = nil
		minor := 0
		if !checkpnt.MinorEmpty() {
			minor = checkpnt.MinorTop()
		}

		// Gs = W^{-T}*G, in packed storage.
		blas.Copy(G, Gs)
		//checkpnt.Check("00factor_qr", minor)
		scale(Gs, W, true, true)
		//checkpnt.Check("01factor_qr", minor)
		pack2(Gs, dims, 0)
		//checkpnt.Check("02factor_qr", minor)

		// Gs := [ Gs1, Gs2 ]
		//     = Gs * [ Q1, Q2 ]
		lapack.Ormqr(QA, tauA, Gs, la.OptRight, &la.IOpt{"m", cdim_pckd})
		//checkpnt.Check("03factor_qr", minor)

		// QR factorization Gs2 := [ Q3, Q4 ] * [ R3; 0 ]
		lapack.Geqrf(Gs, tauG, &la.IOpt{"n", n - p}, &la.IOpt{"m", cdim_pckd},
			&la.IOpt{"offseta", Gs.Rows() * p})
		checkpnt.Check("10factor_qr", minor)

		solve := func(x, y, z *matrix.FloatMatrix) (err error) {
			// On entry, x, y, z contain bx, by, bz.  On exit, they
			// contain the solution x, y, W*z of
			//
			//     [ 0         A'  G'*W^{-1} ]   [ x   ]   [bx       ]
			//     [ A         0   0         ] * [ y   ] = [by       ].
			//     [ W^{-T}*G  0   -I        ]   [ W*z ]   [W^{-T}*bz]
			//
			// The system is solved in five steps:
			//
			//       w := W^{-T}*bz - Gs1*R1^{-T}*by
			//       u := R3^{-T}*Q2'*bx + Q3'*w
			//     W*z := Q3*u - w
			//       y := R1^{-1} * (Q1'*bx - Gs1'*(W*z))
			//       x := [ Q1, Q2 ] * [ R1^{-T}*by;  R3^{-1}*u ]

			minor := 0
			if !checkpnt.MinorEmpty() {
				minor = checkpnt.MinorTop()
			}

			// w := W^{-T} * bz in packed storage
			scale(z, W, true, true)
			pack(z, w, dims)
			//checkpnt.Check("00solve_qr", minor)

			// vv := [ Q1'*bx;  R3^{-T}*Q2'*bx ]
			blas.Copy(x, vv)
			lapack.Ormqr(QA, tauA, vv, la.OptTrans)
			lapack.Trtrs(Gs, vv, la.OptUpper, la.OptTrans, &la.IOpt{"n", n - p},
				&la.IOpt{"offseta", Gs.Rows() * p}, &la.IOpt{"offsetb", p})
			//checkpnt.Check("10solve_qr", minor)

			// x[:p] := R1^{-T} * by
			blas.Copy(y, x)
			lapack.Trtrs(QA, x, la.OptUpper, la.OptTrans, &la.IOpt{"n", p})
			//checkpnt.Check("20solve_qr", minor)

			// w := w - Gs1 * x[:p]
			//    = W^{-T}*bz - Gs1*by
			blas.GemvFloat(Gs, x, w, -1.0, 1.0, &la.IOpt{"n", p}, &la.IOpt{"m", cdim_pckd})
			//checkpnt.Check("30solve_qr", minor)

			// u := [ Q3'*w + v[p:];  0 ]
			//    = [ Q3'*w + R3^{-T}*Q2'*bx; 0 ]
			blas.Copy(w, u)
			lapack.Ormqr(Gs, tauG, u, la.OptTrans, &la.IOpt{"k", n - p},
				&la.IOpt{"offseta", Gs.Rows() * p}, &la.IOpt{"m", cdim_pckd})
			blas.AxpyFloat(vv, u, 1.0, &la.IOpt{"offsetx", p}, &la.IOpt{"n", n - p})
			blas.ScalFloat(u, 0.0, &la.IOpt{"offset", n - p})
			//checkpnt.Check("40solve_qr", minor)

			// x[p:] := R3^{-1} * u[:n-p]
			blas.Copy(u, x, &la.IOpt{"offsety", p}, &la.IOpt{"n", n - p})
			lapack.Trtrs(Gs, x, la.OptUpper, &la.IOpt{"n", n - p},
				&la.IOpt{"offset", Gs.Rows() * p}, &la.IOpt{"offsetb", p})
			//checkpnt.Check("50solve_qr", minor)

			// x is now [ R1^{-T}*by;  R3^{-1}*u[:n-p] ]
			// x := [Q1 Q2]*x
			lapack.Ormqr(QA, tauA, x)
			//checkpnt.Check("60solve_qr", minor)

			// u := [Q3, Q4] * u - w
			//    = Q3 * u[:n-p] - w
			lapack.Ormqr(Gs, tauG, u, &la.IOpt{"k", n - p}, &la.IOpt{"m", cdim_pckd},
				&la.IOpt{"offseta", Gs.Rows() * p})
			blas.AxpyFloat(w, u, -1.0)
			//checkpnt.Check("70solve_qr", minor)

			// y := R1^{-1} * ( v[:p] - Gs1'*u )
			//    = R1^{-1} * ( Q1'*bx - Gs1'*u )
			blas.Copy(vv, y, &la.IOpt{"n", p})
			blas.GemvFloat(Gs, u, y, -1.0, 1.0, &la.IOpt{"m", cdim_pckd},
				&la.IOpt{"n", p}, la.OptTrans)
			lapack.Trtrs(QA, y, la.OptUpper, &la.IOpt{"n", p})
			//checkpnt.Check("80solve_qr", minor)

			unpack(u, z, dims)
			checkpnt.Check("90solve_qr", minor)
			return nil
		}
		return solve, err
	}
	return factor, nil
}